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INVESTIGATION OF CRETACEOUS MOLLUSCAN SHELL MATERIAL FOR 

ISOTOPIC INTEGRITY: EXAMPLES AND IMPLICATIONS FROM THE 
BACULITES COMPRESSUS/CUNEATUS BIOZONES (CAMPANIAN) OF THE 

WESTERN INTERIOR SEAWAY 
 

Ashley da Silva 

ABSTRACT 

  Whether a global greenhouse interval is a distinct or distant future, it is important 

to understand the dynamics of a greenhouse system.  During such intervals the oceans, in 

the absence of sizeable polar ice caps, flood the continental shelf.  The stratification and 

circulation of these epicontinental seas are open to debate, because there are no Recent 

analogs.  The carbon and oxygen stable isotope record of fossil molluscan shell from 

epicontinental seas has the potential to reveal their stratification and seasonal cycles.   

As a study sample, mollusks from the Baculites compressus and Baculites 

cuneatus biozones of the Western Interior Seaway of North America were collected from 

three locations: Kremmling, Colorado; Trask Ranch, South Dakota; Game Ranch, South 

Dakota.  These fossils date to the Campanian (Late Cretaceous).  Taxa include 

ammonites, bivalves, gastropods, and nautiloids. 

  The first part of this investigation, described in Chapter 2, investigates the degree 

of alteration in these specimens.  Elevated concentrations of minor elements such as 

magnesium and strontium reveal alteration from the original aragonite and/or calcite 

skeletons.  Concentrations of these elements obtained by ICP-OES analysis are compared 

within several suites of specimens: mode of preservation, shell testing location, shell 
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color, cementation, appearance under light microscope, and appearance under scanning 

electron microscope.  Each of these suites tests a hypothesis about optimal shell 

preservation.  Shell was found to be preserved best in shale rather than concretions, 

ammonite phragmacone rather than septa, opalescent specimens rather that non-

opalescent ones, and uncemented shells rather than cemented shells, especially those with 

second-order versus first-order cement.  Salinity and temperature values were derived for 

the organisms in the Western Interior Seaway: while bivalves produced unusually low 

temperatures, the others were reasonable for an inland sea.  

  The second part of this study, described in Chapter 3, examines the isotopic 

record within exemplary mollusk shells, taken perpendicular to growth lines.  The data 

for this investigation in sclerochronology documents the dominant isotopically enigmatic 

bottom-water habitat of the Inoceramus, the geochemical signature of the overlying water 

mass inhabited by Baculites, and short-term migrations between the two water masses in 

the nautiloid Eutrephoceras.  
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CHAPTER 1. INTRODUCTION 

1.1 An Introduction to the Western Interior Seaway 
 

The Western Interior Seaway, an epicontinental sea during the Cretaceous Period, 

has no modern analog.  The seaway connected with open oceanic conditions in the north 

and south, unlike the restricted circulation of today’s Hudson Bay, Persian Gulf, or North 

Sea.  Reconstructing how these bodies of water affected global temperatures, water 

circulation, and biological migration and evolution patterns requires knowledge of the 

nature of water masses within these seaways.  Several models for the structure of the 

Western Interior Seaway have been proposed.  Of particular concern is the fate of the 

fresh water entering the basin from the east, as well as from the Sevier Orogenic Belt to 

the west.  Wright (1987) argues, based on stable-isotope data from mollusk shells and 

whole-rock samples, that the intermediate waters in which most ammonites lived were 

cooler and less saline than the deep waters the bivalves inhabited.  The models call for 

above-normal salinity in the bottom water due to coastal evaporation and subsequent 

sinking or below-normal salinity for the intermediate water due to high freshwater runoff 

rates, respectively.  Tsujita and Westermann (1998) added a third layer – a “brachyhaline 

water cap” extending from the shoreline and tapering off towards the center of the 

seaway -- to explain their very light δ18O values for Placenticeras ammonites.  In 

contrast, Slingerland (1996) argues for greater estuarine circulation and mixing in the 

Western Interior Seaway, such that the salinity stratification only exists near the coasts 

where freshwater was input.  It is certainly possible that at different times, the general 
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paleoceanographic circulation pattern of the Western Interior Seaway differed.  For this 

study, two biozones in the Upper Campanian were selected.  The sites in this 

investigation represent nearly synchronous deposits, so that any variation in circulation 

patterns with time is minimized, and included both nearshore and deeper-water 

environments. 

Biozones Selected for Study 

1.2.1 Selection of Biozones: The two biozones of the Upper Campanian that were 

selected were the Baculites compressus and B. cuneatus biozones.  These zones are 

named for two common orthoconic heteromorph ammonites.  The two biozones are often 

grouped together because of the uncertainty in the numeric date for the boundary 

between the two zones (Scott and Cobban, 1986) and the apparent stratigraphic overlap 

between the two ammonite species.  Selection of the biozones was part of a larger study, 

funded by the National Science Foundation and in collaboration with the American 

Museum of Natural History, New York, to analyze molluscan oxygen, carbon, and 

strontium isotopes across the former Western Interior Seaway.  The stratigraphic 

formation investigated is called the Pierre Shale in all sampling locations, although the 

lithologic characteristics of the unit differ between the Colorado and South Dakota 

locations.  A summary of the basic lithologic characteristics of the Upper Campanian 

outcrops, including the Baculites compressus and B. cuneatus biozones, is presented in 

Table 1. 
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1.2.2 Fauna of the Biozones: The ammonites collected from these biozones 

consist of species within Baculites, Solenoceras, Axonoceras, Anaklinoceras, Cirroceras, 

Didymoceras, Pachydiscus, Placenticeras, Hoploscaphites, and Jeletzkytes.  Except for 

the occassional Pachydiscus specimen, Placenticeras is the only planispiral ammonite 

represented; the remainder are all heteromorphic forms.  The nautiloid Eutrephoceras 

occurs in the biozones.  Bivalves include abundant Inoceramus, less frequent Anomia, 

and many other genera present in low abundances.  Gastropods are uncommon and small 

in size.   

1.2.3 Prior Research in the Baculites compressus and Baculites cuneatus 

Biozones: Because of the abundance of fossils in the Baculites compressus/cuneatus 

biozones, they have been used in previous paleooceanographic studies.  One of the first 

studies on stable isotopes using fossil mollusks, by Tourtelot and Rye (1969), used the 

δ18O ratio of Baculites specimens and belemnites to conclude that the Western Interior 

Seaway ranged from 21-33 oC, significantly warmer then the Atlantic coast, which was 

17-23 oC at the time.  The authors also found lighter oxygen isotopes and heaver carbon 

isotopes for their bivalve samples (inoceramids and oysters) than for their baculitid 

samples.  This research is supported by Forester et al. (1977), who found an average δ18O 

paleotemperature of 25 oC for the Baculites compressus biozone and 20 oC for the 

Baculites cuneatus biozone in southern Saskatchewan.  He et al. (2005) disputed the 

difference in temperature between the two biozones using a more robust collection of 

baculitid specimens, from both the United States and Canada.  They did, however, note a 

general trend toward heavier isotopic values coinciding with marine regression, which 

peaked during the biozones of interest.  Their isotopic values for Baculites and 
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Inoceramus specimens are similar to those of Tourtelot and Rye (1969), but they add data 

points for the heteromorph ammonites Didymoceras and Scaphites, which fall between 

the Inoceramus and Baculites fields.  Schmidt (1997) observed an overlap between 

epifaunal (primarily, bivalve) and nektonic (primarily, ammonite) stable isotope fields for 

the Western Interior Seaway.  Tsujita and Westermann (1998) attempted to resolve 

paleotemperatures recorded by ammonites in the uppermost Campanian to the species 

level, but their intrageneric conclusions are hampered by a small dataset.  They noted 

unrealisticly high paleotemperatures for Inoceramus, and also very light δ18O (mean =  

-5.2‰ versus the Pee Dee Belemnite standard) in Placenticeras, which they attribute to 

low salinity in the uppermost part of the water column but which probably reflect 

diagenetically altered material (Landman, pers. comm., 2005) 

Stable isotope sclerochronology has been performed on ammonites, bivalves, and 

the nautiloid Eutrephoceras.  Because of their common occurrence, long generic 

stratigraphic ranges, and tendency to be preserved more completely than Hoploscaphites 

or Placenticeras, members of the genera Baculites and Inoceramus have been studied 

extensively.  Tourtelot and Rye (1969) found a sinusoidal δ18O curve in a Baculites 

section, with one minimum and two maxima.  The δ18O range of this baculitid was from  

-0.8‰ to -1.2‰, equivalent to a 1.5 oC temperature difference.  The δ13C curve for this 

specimen shows a direct relationship with age of the organism, and has superimposed 

maxima and minima paralleling the oxygen curve.  Fatherree et al. (1998) show a slightly 

larger range (0.2‰ to -1.2‰) in a larger Baculites section.  These authors note an inverse 

relationship between δ18O and δ13C, consistent with temperature being the most 

significant variable reflected in the isotopic signatures.  Along the first six and the last 
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eight centimeters of the shell, however, the δ13C curve parallels the δ18O curve.  

Likewise, Landman et al. (1983) document a positive correlation between δ13C and δ18O 

between the first nine septa in a Western Interior Seaway Eutrephoceras, after which the 

correlation becomes negative.  Fatherree (1995) documents an inverse relationship 

between δ13C and δ18O in the bivalve Artica ovata and a direct relationship between them 

in another bivalve, Inoceramus sagensis.  Tourtelot and Rye show an approximately 

parallel set of δ13C and δ18O maxima for their Inoceramus example.  These investigations 

both calculate Inoceramus paleotemperatures above 30oC, a temperature that is at the 

upper limit for shell precipitation in Recent bivalves.  Because inoceramids have no close 

living relatives, explanations from high-salinity environmental preferences to symbiotic 

bacteria have been generated to explain the unrealistic δ18O paleotemperatures.   

1.2  Locations Selected for Study 
 

1.3.1 Kremmling, Colorado, Sampling Site: The Kremmling, Colorado, sampling 

site was located on the United States Bureau of Land Management Ammonite Preserve, 

north of the town of Kremmling, Colorado.  Geographic coordinates were 40o14’N, 

106o23 to 106o24’W.  The outcrops, exposed on hilltops, were comprised of beige 

siltstone (Munsell color designations 2.5YR7/5 to 2.5YR7/6) with three stratigraphic 

horizons of concretions.  The concretions, up to one meter in diameter, weathered to the 

same color as the siltstone, but were a light grey (5YR3/2) upon a fresh surface. 
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1.3.2 Game Ranch, South Dakota, Sampling Site: The Game Ranch, South Dakota 

site was located on a tall cutbank, within a private ranch on the southeastern rim of the 

Black Hills near the town of Farmingdale.  Geographic coordinates were 43o55’N, 

102o50’W.  The lithology was a black, fissile shale (Munsell designation 5YR3/2 when 

dry) containing concretions and fossils preserved directly in the shale.  Concretions were 

small, usually containing a single fossil, and had a reddish 10YR2/4 interior and an 

orange 10YR6/10 weathering rind.  Concretionary horizons were obscured by shale 

erosion.   

1.3.3 Trask Ranch, South Dakota, Sampling Site: The Trask Ranch, South 

Dakota, site was located on a private ranch, also on the southeastern side of the Black 

Hills.  Geographic coordinates for this site were 44o14’N, 102o28’W.  Large (25 cm to 1 

m) concretions were dispersed in a riverbed; from these, numerous fossils were 

recovered.  Some concretions contained mostly intact fossils, while others contained a 

“shell hash” of small broken fragments.   Concretions at this site were 5YR3/2 to 5YR5/2 

in color.  Some showed veins of calcite crystals typical of septarian concretion, but 

ferrous weathering rinds were not well-developed as in the Game Ranch specimens. 

1.4. Fossils Recovered 

1.4.1 Fossils from Kremmling, Colorado: At the Kremmling, Colorado, site, 

large, numerous Placenticeras -- including mature macroconchs, mature microconchs, 

and juveniles -- were found (though most were internal and external molds with limited 

shell preservation).  Classification for Placenticeras and other genera examined in this 

study is summarized in Table 2.  One of the Placenticeras specimens had limpets of the 
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genus Anisomyon adhering to its shell, but these had little to no shell material preserved.  

Specimens of Hoploscaphites and Baculites were also relatively common.  Baculites 

specimens appeared to be Baculites compressus, but many specimens were crushed, 

making evaluation of the amount of inflation, a key identification parameter, difficult.  

One Axonoceras compressum and two Anaklinoceras gordiale specimens were found, 

suggesting that the location is part of the Baculites compressus biozone.  The 

morphology of these ammonites and others used in this investigation are described in 

Table 3.  Unfortunately, the quantity of shell preserved on these tiny heteromorph 

ammonites did not allow for chemical analysis.  Partial specimens of the nautiloid 

Eutrephoceras also had insufficicient shell material.  Bivalves recovered included 

numerous Inoceramus, some preserved with calcitic and aragonitic layers together, but 

most with layers separated.  Anomia was also represented, as were small (< 1 cm) 

bivalves and gastropods not identified in this study.   

1.4.2 Fossils from Game Ranch, South Dakota: At the Game Ranch, South 

Dakota, site, Hoploscaphites was nearly absent.  Placenticeras, Baculites, and 

Inoceramus were all present in both shale and concretions.  Fossils did not appear to be 

compressed or otherwise deformed.   Five Nymphalucina bivalves were discovered in the 

shale.  In addition, two specimens each of Anomia and a scaphopod were collected.  Only 

the bivalves were complete.   
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1.4.3 Fossils from Trask Ranch, South Dakota: At the Trask Ranch, South 

Dakota, Placenticeras was absent and Hoploscaphites fairly common.  Baculites was the 

most common ammonite at the site.  The most common bivalve was Inoceramus, and 

some concretions contained only specimens of this genus.  Rarer genera, for which two to 

five specimens were collected, include the bivalve Nymphalucina, and the gastropods 

Drepanocheilus and Anisomyon.  A single scaphopod was also found.  Some fossils were 

partial or shattered, especially those in the “fossil hash” concretions, but many others 

appeared to be complete and undeformed.  Two specimens of the nautiloid 

Eutrephoceras were collected from the site by Neal Larson, Black Hills Institute of 

Geological Research, and sent for the sclerochronology portion of this project.  

1.4.4 Sampling Bias: The specimens collected at the three sampling locations are 

in no means an accurate, proportional sample of the Western Interior Seaway fauna from 

73 Ma.  Fossilization biases likely exist.  Thin-shelled Anomia, for instance, may have 

been more common in the seaway than it is in the Kremmling deposits.  Small specimens, 

such as the gastropods and bivalves, could easily have been overlooked during collection. 

 Fossils with a large amount of preserved shell were preferentially collected.  Lastly, 

generic variety was one of the goals in collection, so some specimens of common genera 

such as Baculites and Inoceramus were passed by in favor of less-common genera such 

as Hoploscaphites. 
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FIGURE 1—Extent of the Western Interior Seaway in the United States During the 
      Baculites compressus / Baculites cuneatus Biozones. 

 

Key: 
Lowermost Maastrichtian 
Uppermost Upper Campanian 
 Middle Upper Campanian (B. compressus/B. cuneatus biozones) 
Lower Upper Campanian 
Middle Cenomanian 

 
 
The sample sites for this study are located in the western and central parts of the former 
Western Interior Seaway.  Contemporaneous outcrops also occur in southern 
Saskatechewan, near the western shoreline of the seaway, and in east-central South 
Dakota, near the eastern shoreline.  Shoreline taken from Larson et al., 1997; data for 
locations from the American Museum of Natural History (2005). 
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TABLE 1—Upper Campanian Biozones for the Western Interior Seaway 
 

Ammonite 
biozone 

Radiometric 
Ages from 
Bentonites 
(Larson et al., 
1997) 
 

Dominant Lithology, 
Kremmling, Colorado  
(Scott and Cobban, 
1986) 

Dominant Lithology, 
Trask Ranch and Game 
Ranch, South Dakota,  
(Larson et al., 1997) 
 

Baculites 
jenseni 

Upper 
boundary = 

71.3 ± 0.5 Ma 

Lower portion siltstone; 
upper portion sandstone 
with bentonitic shale 
beds; both bear 
ironstone concretions 

Unconformity 

Baculites 
reesidei 

 Shale with sparse 
ironstone concretions 

Dark grey, fissile shale 
with septarian 
concretions 

Baculites 
cuneatus 

  Shale with 
septarian concretions 

Dark grey, fissile shale 
with septarian 
concretions 

Baculites 
compressus 

73.35 ±0.39 Ma Siltstone and large dated 
bentonite bed in lower 
portion; shale in upper 
portion; both with 
septarian concretions 

Dark grey, fissile shale 
with septarian 
concretions 

Didymoceras 
cheyennense 

 Siltstone in lower 
portion, sandstone in 
upper portion; both with 
septarian concretions 

Bentonitic shales 

Exiteloceras 
jenneyi 

74.6 ±0.72 Ma Alternating sandstones 
and shales with 
septarian concretions 

Dated bentonite, 
bentonitic shales 

Didymoceras 
stevensoni 

 Alternating sandstones 
and shales with 
septarian concretions 

Dark grey, fissile shale 
with septarian 
concretions 

Didymoceras 
nebrascense 

 Alternating sandstones 
and bentonitic shales 
with septarian and 
ironstone concretions 

Dark grey, fissile shale 
with septarian 
concretions 

 
The lithology of the Baculites compressus/Baculites cuneatus biozones is dominated by 
dark grey, fissile shale in South Dakota.  The Kremmling, Colorado, site also includes 
siltstones.  Both locations contain septarian concretions.  The Baculites compressus 
biozone has been dated to approximately 73.4 Ma. 
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TABLE 2–Fossil Genera Investigated in this Study 

Phylum Mollusca 
 Class Bivalvia (Linnaeus, 1758) 
  Subclass Heterodonta (Neumayr, 1884) 
   Order Myoida (Goldfuss, 1820) 
    Family Teredinidae (Rafinesque, 1815) 
    Teredo (Linnaeus, 1758) 
 Order Veneroida (H and A Adams, 1856) 
  Family Lucinidae (Fleming, 1828) 
   Nymphalucina (Speden, 1970) 
  Subclass Pteriomorphia (Beurlen, 1944) 
  Order Ostreoida (Férussac, 1822) 
   Family Anomiidae (Rafenisque, 1815) 
   Anomia (Linneaus, 1758) 
 Order Pterioida (Newell, 1965) 
  Family Inoceramidae2 (Giebel, 1852)  
   Inoceramus (J. Sowerby, 1814)  
Class Cephalopoda3 (Cuvier, 1797) 
  Subclass Ammonoidea (Author unknown) 
 Order Ammonitida (Hyatt, 1889) 
  Family Baculitidae (Gill, 1871) 
   Baculites (Lamarck, 1799) 
  Family Nostoceratidae (Hyatt, 1894) 
   Cirroceras (Conrad, 1868) 
   Didymoceras (Hyatt, 1894) 
  Family Placenticeratidae (Hyatt, 1900) 
   Placenticeras (Meek, 1870) 
  Family Scaphitidae (Meek, 1876) 
   Hoploscaphites (Nowak, 1911) 
   Jeletzkytes (Riccardi, 1983) 
  Subclass Nautiloidea (Agassiz, 1847) 
  Order Nautilida (Agassiz, 1847) 
   Family Nautilidae (Blainville, 1825) 
                                      Eutrephoceras (Hyatt, 1894)
Class Gastropoda4 (Cuvier, 1797) 
  Subclass Prosobranchia (Edwards,1848) 
  Order Basommatophora (Schmidt, 1855) 
   Family Siphonariidae (Gray, 1840) 
    Anisomyon (Meek and Hayden, 1860) 
  Order Mesogastropoda (Thiele, 1925) 
   Family Aporrhaidae (Morch, 1852) 
                                                 Drepanocheilus (Meek, 1876) 
 

1 - Classification follows Speden (1970) 2 - Classification follows Walaszczyk and Cobban, 2000
3 - Classification follows Besnosov and Michailova, 1991; Larson et al., 1997 
4 - Classification follows Abdel-Gawad, 1986 
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TABLE 3—Morphology of Ammonites Investigated in this Study 
 
 Protoconch & 

Neanoconch 
Juvenile Adult 

Baculites Planispiral Orthoconic Orthoconic 
Hoploscaphites Planispiral Planispiral 

(moderately 
inflated) 

J-shaped or U-shaped 
chamber 

Anaklinoceras Planispiral Turritellid spire Inverted U-shaped 
chamber (A. gordiale) 
or planispiral (A. 
reflexum) 

Axonoceras Planispiral Planispiral 
(inflated), separated 
whorls 

Planispiral (inflated), 
separated whorls 

Placenticeras Planispiral Planispiral 
(compressed) 

Planispiral 
(compressed) 

 
Many of the types of ammonites found in the sampling sites for the Baculites 
compressus and Baculites cuneatus biozones exhibit vast changes in growth program 
across different growth stages.  In others, the transition between growth stages is 
marked by changes in shell ornamentation alone. 
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CHAPTER 2. SHELL ALTERATION INVESTIGATION 

2.1 Previous Investigations of Molluscan Fossil Shell Alteration 
 

2.1.1. Rationale for Utilizing Minor Element Concentrations to Evaluate Shell 

Alteration: Oxygen and carbon stable isotopes ratios recovered from mollusk shells are 

commonly used to reconstruct paleotemperature.  Molluscan shells are used because they 

tend to be relatively common, are less susceptible to diagenetic alteration than bone 

apatite or bulk samples of rock because of their lower porosity (Constantz, 1986), 

generally secrete their shells in isotopic equilibrium with seawater (e.g., Bettencourt and 

Guerra, 1999; Ivany et al., 2003) and may be compared to Recent relatives or analogs to 

make paleoenvironmental inferences.  In addition, the accretionary nature of molluscan 

growth makes sclerochronology, the focus of Chapter 3, possible.  In mollusks, the δ18O 

ratio is interpreted as a reflection of paleotemperature, once adjustments have been made 

to account for the δ18O ratio of the ambient waters, which is a function of temperature, 

salinity, and, during icehouse intervals, the volume of water entrained in ice caps 

(Wright, 1987).  Temperature decreases with heavier δ18O ratios in aragonitic shell 

according to the equation: 

 T = 21.8 - 4.69(δ18O arag - δ18O w)                                      (1) 

This equation uses isotopic ratios in terms of the Pee Dee Belemnite (PDB) standard 

(Grossman and Ku, 1986).  The δ13C ratio depends on temperature, salinity, and the 

isotopic composition of dissolved inorganic carbon in the system (Grossman and Ku, 

1986).  Dissolved inorganic carbon is isotopically heaviest near the surface, due to 
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preferential uptake of δ12C by phytoplankton, and lightest in seafloor sediment pore 

waters. As temperature increases, the difference between the isotopic signatures of the 

molluscan shell and dissolved inorganic carbon (the carbon isotope enrichment) 

decreases in a linear fashion.  Because the δ13C ratio of dissolved inorganic carbon is 

isotopically heavier than the δ13C ratios of molluscan shell, this means that at higher 

temperatures, heavier δ13C ratios result (Grossman and Ku, 1986). 

   Carbon isotope ratios in molluscan shell may be modified from seawater δ13C 

by exchange with metabolic CO2, which tends to have an isotopic signature of -40‰ to  

-30‰, as evidenced by the trend toward lighter δ13C ratios in the muscle scar regions of 

the Nautilus shell (Auclair et al., 2004).   There has also been also a metabolic effect 

documented for mollusks with respect to δ18O, with greater variation in δ18O for the surf 

clam Spisula (Ivany et al., 2003) during early ontogeny, and for the abalone Haliotis 

when rapidly repairing injured shell (Epstein et al., 1963).  This effect may also be 

present in Baculites (Fatherree et al., 1998) and Eutrephoceras (Landman et al., 1983).  

A positive correlation between δ18O and δ13C suggests metabolic discrimination against 

heavier isotopes, while a negative correlation could indicate increased productivity due to 

higher temperatures (Mitchell et al., 1994).  In some mollusks, such as Strombus and 

Baculites, with the onset of maturity, δ13C and δ18O trend simultaneously toward heavier 

values (Fatherree et al., 1998; Herbert, pers. comm., 2006).  During spawning, shell 

precipitation slows (Elliot et al., 2003), so isotopic records are biased towards the 

temperatures of water when the organism is not spawning.  Thus, a mollusk that spawns 

in summer may show mostly moderate and cold temperatures in its sclerochronologic 

record.  A mollusk that spawns in summer but ceases precipitation of shell when 
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temperatures are below a certain threshold, which is reached in winter months, will show 

moderate temperatures. 

When estimating paleoceanographic conditions from stable isotopes in fossil 

shell, it is imperative that the observed variation in the stable isotopes is due to 

paleoenvironment and/or metabolism, rather than post-depositional alteration.  Defining 

“unaltered” shell presents a challenge to paleontologists and geochemists.  Alteration 

may include dissolution and recrystallization.  One sign of dissolution is the presence of 

holes in the individual crystals of the shell; another is the rounding of their edges 

(Buchardt and Weiner, 1981; Schmidt, 1997).  Recrystallization produces a “blocky” 

crystal texture (Schmidt, 1997) or fusion of individual aragonitic platelets (Buchardt and 

Weiner, 1981).  Mineralogical impurities may also grow upon or adsorb to the shell.  

Common mineralogical impurities include the calcite spar and gypsum crystals appearing 

on ammonite shell witnessed by Buchardt and Weiner (1981), the pyrite noted by 

Landman et al. (1983) in Eutrephoceras shell, and the chert and rhombohedral calcite 

crystals observed by Elorza and García-Garmilla (1996) in the void spaces of Inoceramus 

shell.   

Minor element analysis measures the concentration of chemical elements within 

the shell.  Some elements, such as Fe, Mg, Mn, and Sr, substitute into the crystal lattice 

of aragonite or calcite.  Others, such as K and Na, either reside in interstitial spaces in the 

crystal lattice or adsorb to its exterior (Dodd, 1967).  Analyses are usually performed on 

an electron microprobe or an ICP system.  The electron microprobe detects X-ray 

radiation produced when electrons bombard a thin section, while the ICP-OES system 

detects the wavelength of radiation produced by interaction of a plasma beam with 



www.manaraa.com

 

16 

cations in solution.  Minor element analysis was selected for this study because: 

1. Minor element analysis has the potential to reveal the source of alteration, such as 

exchange with meteoric water or precipitation of secondary cements; 

2. The concentrations of minor elements, particularly Mg, K, Na, and Fe, may be 

altered in shells that show no evidence of recrystallization (Ragland et al., 1979); 

3. A large body of molluscan minor element data exists for comparison (e.g., Brand, 

1986; Pagani and Arthur, 1998;Dutton et al., 2002); and 

4. The minor elements of Sr, Mg, and Na have experimentally determined 

relationships with temperature and salinity that may be applicable to this study. 

Because the only elements of interest are cations that substitute into the aragonite crystal 

structure or form the cations of secondary minerals, the ICP-OES method was selected.  

Seven elements were then selected for, based upon prior research: aluminum, potassium, 

iron, manganese, magnesium, sodium, and strontium. 

2.1.2. Studies Utilizing Minor Elements as a Proxy for Shell Alteration: 

Concentrations of potassium and sodium are believed to reflect seawater compostion.  

White (1979) established that mollusks coprecipitate potassium and sodium in 

equilibrium with seawater (as cited in Brand, 1986).  In the oyster Crassostrea, there is a 

statistically significant linear correlation between salinity and sodium concentration in 

the precipitated shell (Rucker and Valentine, 1961).  Sodium content in Crassostrea 

valves is ~3000 ppm for seawater of normal salinity, but is ~2500 ppm for seawater with 

a salinity of 15‰.  The salinity-sodium relationship is supported by the presence of 

similar Na/Ca ratios among different genera of ammonites that presumably lived in the 

same vertical level of the water column (Whittaker et al., 1986).    However, whether the 
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Na/Ca ratio in cephalopod mollusks reflects true salinity may be debatable.  There is no 

correlation between Na/Ca and stable isotopes in the Whittaker et al. (1986) study, which 

are influenced, albeit indirectly, by salinity.  Of course, the study location (in the center-

north of the Western Interior Seaway) may not have experienced sufficient salinity 

fluctuations to produce fluctuations in Na/Ca.  Of more concern is a minor-element 

analysis of Recent Nautilus which found a discrimination factor of 2:1 for sodium, 

indicating a preference for sodium accumulation in the shell versus the concentration in 

seawater (Brand, 1983).  These findings, however, have not been corroborated by study 

of other Nautilus species (Mann, 1992).  Brand (1986) also describes a non-linear 

relationship between salinity and sodium in Recent and fossil aragonitic mollusks:  

S = -5.769ln(A) + 28.380        (2) 

Salinity S is given in parts per thousand ± 0.5, and A is the ratio of ppm Sr / ppm Na, or 

the geometric mean of such ratios.  The use of strontium is empirically derived, and 

appears to correct for the genus-level variation in Na discrimination.  Strontium and, to a 

lesser extent, sodium may be depleted during diagenesis; other elements which are 

typically enriched during diagenesis can be used to identify specimens that could produce 

questionable paleosalinities.  The elements manganese, magnesium, and iron are all 

present in meteoric water at 2-4 times the level of seawater, so can be used as proxy for 

diagenetic alteration by exchange with meteoric water (Veizer and Fritz, 1976).  For 

unaltered specimens, the covariance of magnesium with sulfur in the bivalve Mytilus 

edulis suggests that the organic matrix contains a significant amount of magnesium 

(Rosenburg and Hughes, 1991).  Higher magnesium concentrations are also correlated 

with faster shell precipitation in this bivalve, suggesting variation of the element with 
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metabolism.  The average concentrations of magnesium in molluscan shell vary 

significantly by taxonomic class (Turekian and Armstrong, 1960) and by species in 

Nautilus (Mann, 1992).   

The strontium concentration of aragonitic molluscan shell has been correlated 

with many different environmental and physiological factors.  A decrease in strontium, 

for instance, has been correlated with all of the following: 

1) A decrease in salinity along an exponential relationship that can be 

approximated as linear above salinities of 20‰.  This trend is based on 

values from a variety of Recent aragonitic bivalves and gastropods, 

compiled by Dodd and Crisp (1982).   

2) An increase in salinity for individual Neomidion bivalves living in a 

Jurassic estuary (Holmden and Hudson, 2003). 

3) A slowing of growth rate and/or metabolic effects in the Eocene bivalve 

Venericardia and gastropod Clavilithes (Purton et al., 1999). 

4) Species-specific differences, rather than environmental or phylogenetic 

gradients, as in Recent Nautilus 

5) A decrease in the δ18O ratio, implying an increase in temperature and 

the potential utility of strontium in paleothermometry for the Antarctic 

Eocene bivalve Cucullaea (Dutton et al., 2002). 

6) A decrease in visually assessed shell quality (Buchardt and Weiner, 

1981), and percent aragonite (Hallam and Price, 1966),indicating 

alteration. 

All of these trends are superimposed on a ~1:5 discrimination factor for strontium 
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concentrations in seawater versus strontium concentrations in the aragonite of bivalves, 

gastropods, and Nautilus (Turekian and Armstrong, 1960; Brand, 1983).   

Very little research done has been on aluminum concentrations in molluscan 

shell, perhaps because the concentrations are low, approaching the detection limits of the 

analytical techniques (Brand, 1983).  Brand (1983) found that Nautilus shell contains 0-

30 ppm of aluminum.  Unaltered inoceramid shell, according to Elorza and García-

Garmilla (1996), is ~0.2% Al2O3.  Given the paucity of information about aluminum, this 

study will significantly add to the existing data on this element.  By far the most 

extensive data has been collected on magnesium and strontium concentrations, and these 

elements display complex, various relationships for different mollusks.  With additional 

research, such complexities may be revealed for other minor elements included in 

molluscan shell. 

2.2 Methods 

2.2.1 Selection of Samples: Samples for the fossil shell alteration investigation 

were taken in groups, here called “suites,” that each addressed particular multiple 

working hypotheses.  The hypotheses, taken primarily from previous research on shell 

preservational issues in Western Interior Seaway fossils, are as follows: 

(1) Shell preserved directly in shale will be more pristine than shell preserved in 

concretions, which may be chemically altered during the dissolution and 

precipitation associated with concretion formation.  An alternative hypothesis 

is that shell preserved within concretions will be less altered than shell 

preserved in shale, because the concretion is impermeable to groundwater.   

(2) Ammonite phragmacone will be less altered than ammonite septa, because of 
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the tendancy for cements to form in the interior of the ammonite shell.  An 

alternative hypothesis is that ammonite phragmacone will be more altered, 

because it is on the exterior of the shell and could thus be exposed to more 

groundwater and/or surface water. 

(3) Shell that is white to beige in color, with iridescent nacre, will be the most 

pristine.  As in Recent molluscan shells, slight variation in color from that 

noted above may indicate optimal preservation for different genera.   

(4) Molluscan shell will have distinct minor element and isotopic signatures from 

the surrounding matrix (shale, siltstone, or concretion), and from crystalline 

cements precipitated within the shell.  Progressively more diagenetically 

altered shell material will have minor element and isotopic signatures 

intermediate between unaltered shell and the cement itself. 

(5) Isotopic signatures will cluster by genus, and allow for a classification of 

mollusks as inhabiting deep-water, intermediate-water, or surface-water 

masses.  Certain heteromorph ammonites may display two modes of life, 

changing habitat during ontogenetic changes in morphology. 

(6) Isotopic signatures will display a shift between Kremmling, Colorado, 

specimens and Trask and Game ranches, South Dakota, specimens, due to 

differences in temperature and/or salinity.   

To test hypothesis 1, a “Mode of Preservation” suite was developed.  This suite 

included specimens of the same genus (Placenticeras, Inoceramus, Baculites, and 

Nymphalucina) preserved in shale and calcareous concretions.  Shale-concretion pairs of 

Baculites and Inoceramus were selected from a single locality: the Game Ranch.  
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Limitations in the collected material meant that this was impossible for all genera, and 

lithologic pairs had to be constructed using multiple localities.  One sample was taken 

from each of twenty specimens (ten shale-concretion pairs). Care was taken to select 

specimens for each pair that were similar in color and shell thickness, and sample these at 

the same point in ontogeny. 

To address hypothesis 2, a “Shell Sampling Location” suite was developed.  This 

suite included specimens of three ammonite genera (Placenticeras, Baculites, and 

Hoploscaphites).  One sample was taken from a septum of each specimen and another 

from the adjacent phragmacone, for a total of twenty samples. 

To investigate hypothesis 3, twenty specimens from each locality were analyzed, 

for a total of sixty specimens in the “Shell Color Suite”.  Genera represented included 

three ammonites (Placenticeras, Baculites, and Hoploscaphites), three bivalves (Anomia, 

Nymphalucina, and Inoceramus), and two gastropods (Anisomyon and Drepanocheilus).  

Two to five specimens of different shell colors were selected for each genus at each 

location, depending on available specimens.  A single sample was taken from each 

specimen, at an equivalent point in ontogeny for specimens of each genus. 

To test hypothesis 4, a 35-specimen “Cementation Suite” was assembled.  Of this 

suite, specimens 1-10 were from Kremmling, specimens 11-15 were from Game Ranch, 

and the remainder were from Trask Ranch.  Four types of samples were taken: ammonite 

phragmacone shell (from Placenticeras, Baculites, and Hoploscaphites), matrix 

(concretion or siltstone), cements precipitated in the cavities of the shell, and calcitic 

material found on the exterior of the shell.  Each specimen contained two or more of 

these materials, with one sample taken of each material, for a total of 111 samples.   



www.manaraa.com

 

22 

For hypotheses 5 and 6, the combined data set was used.  As seen in Table 4, this 

includes over 100 ammonite samples: 59 Baculites samples, 24 Placenticeras samples, 

and 22 Hoploscaphites samples.  The combined data set also contains bivalve samples 

(18 from Inoceramus, 6 from Nymphalucina, and 4 from Anomia) and gastropod samples 

(2 from Anisonmyon and 3 from Drepanocheilus). 

 2.2.2 Treatment of Samples:  Three techniques were used to prepare samples for 

the shell-alteration investigation.  Whenever possible, shell was removed intact, using 

laboratory tweezers and similar implements.  Target sample size was the equivalent of a 

square 2-3 mm on each side.  For particularly “promising” specimens – ammonites with 

clean, irridescent shell displaying growth lines and a total shell thickness of 0.5 mm or 

greater – a second, adjacent sample was taken and sent to the American Museum of 

Natural History for scanning electron microscopy and to SUNY Stony Brook for 

tstrontium isotopic analysis.  When shell could not be removed intact, it was scaped from 

the specimen using a curved pick, with care taken to sample the entire thickness of shell. 

Different layers within a shell, due to differing crystal structures, different temperatures 

at the time of precipitation, and/or metabolic effects at time of deposition, may show 

different isotopic signatures.  For example, the bivalve Pecten shows strongly depleted 

δ18O and δ13C in surficial samples relative to samples which included the entire thickness 

of the shell (Mitchell et al., 1994).  In ammonites, differences in isotopic composition 

with respect to sampling location have been shown for Baculites compressus (Forester et 

al., 1977; Fatherree et al., 1998).  Surficial recrystallization or cement samples were 

scraped from the shells they were preserved upon.  Cement and concretion samples were 

taken using a Dremel® variable-speed drill fitted with a diamond-coated bit.  All 
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specimens were ground into a uniform fine powder using a mortar and pestle, made of 

agate to minimize contamination. 

2.2.3 Mass Spectrometer Analysis:  Subsamples of 60-100 µg were measured on a 

microbalance into small glass vials.  These specimens were dried in a laboratory oven at 

70 oC for at least one week to remove moisture.  The specimens were transferred to 

reaction vials for a target mass of 35-80 µg, which were then reacted with 100% 

phosphoric acid added to each reaction vial within the carbonate preparation device of 

the mass spectrometer.  The mass spectrometer used in this study is a ThermoFinnigan 

Delta Plus XL dual inlet mass spectrometer with an in-line Kiel III Carbonate Preparation 

Device, and resides at the Center for at the College of Marine Sciences, University of 

South Florida, St. Petersburg, Florida.  Six replicates of the NBS19 standard, taken as 

δ13C = 1.95‰ and δ13C  = -2.20‰  with respect to PDB, were included in each mass 

spectrometer run to determine the analytic uncertainty.  Analytical uncertainty, at the 

95% confidence level, was ±0.03‰ for the δ13C values and ±0.08‰ for the δ18O values.  

Data from samples producing a signal of less than 600mv, which usually results from 

carbonate mass <20 µg, were discarded and, when possible, rereun.  All values are 

reported with respect to the Pee Dee Belemnite. 

2.2.4 ICP Analysis:  Subsamples of 100-200 µg were placed directly into 

polyethylene tubes used for the analysis.  Once all the samples were prepared, 2.0 mL of 

2% HNO3 was added and the samples were inverted to ensure the entire sample 

dissolved.  The Perkin Elmer Optima 4300DV dual view ICP-OES, housed at the same 

facility as the mass spectrometer, was calibrated with a series of four serially diluted 

multi-element concentration standards, commercially available from SCP-Science.  All 
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minor element samples were run as a single batch to minimize analytical uncertainty, 

which was better than 1% relative standard deviation for all values.  Table 5 lists the 

detection limits for the elements focused upon in this study. 

2.2.5 Data Processing: Minor element concentrations were received in parts per 

million (ppm) and converted to atomic ratios with respect to calcium.  The ratios, given 

in mMol/Mol Ca, were obtained by dividing the weight percent of the minor element, 

divided by its atomic mass, by the weight percent of calcium, divided by its atomic mass. 

All statistical calculations were performed with the minor element ratios, but the 

concentrations of minor elements in ppm were needed for paleosalinity calculations using 

equation 2.  This equation for paleosalinity, from Brand (1986), was selected because it 

was derived for both gastropod and bivalve mollusks, from a variety of habitats, fossil 

and Recent.  A correction factor, derived from data on Recent Nautilus in the wild, was 

applied to the equation to compensate for the higher concentrations of sodium in 

cephalopods than bivalves or gastropods living in the same habitat (Dodd, 1967). 

 Stable isotope concentrations were received in per-mil notation, with respect to 

the Pee Dee Belemnite (PDB) standard.  A value of δ18O = -5‰ means that the shell has 

a 5‰ lighter δ18O ratio than the PDB standard; i.e., it has a greater proportion of δ13C 

than the standard.  Paleotemperature was calculatied using equation 1, Grossman and 

Ku’s molluscan aragonite temperature correlation.after first applying to determine the 

δ18O value of the waters surrounding the mollusk using Equation 3: 

S(WIS) = [1 – (δw(WIS)- δw(ocean)))/( δf - δw(ocean))] x S(ocean)    (3) 

Constants for δ18O of the open ocean were δw(ocean) = -1.22‰ PDB and S(ocean) = 34.3, 

values calculated from models of Earth without polar ice caps (Schmidt, 1997).    
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Grossman and Ku’s equation is likewise appropriate because all molluscan shell samples 

used in this study, with the exception of calcitic Anomia, for which no unaltered 

specimens were found, were aragonitic.  Inoceramus, which contains both a prismatic 

calcitic layer and aragonitic nacreous layer, was sampled only in the aragonite. 
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TABLE 4--Specimen Suites Used in Shell Alteration Investigations 

 Mode of 
Preservation 
Suite 

Shell 
Testing 
Location 
Suite 

Shell 
Color 
Suite 

Cementation 
Suite 

Total 
Number of 
Samples 

Baculites 
phragmacone 

5 7 15 25 52 

Baculites septa  7   7 
Placenticeras 
phragmacone 

6 2 10 4 22 

Placenticeras 
septa 

 2   2 

Hoploscaphites 
phragmacone 

 1 11 9 21 

Hoploscaphites 
septa 

 1   1 

Inoceramus shell 5  13  18 
Nymphalucina 
shell 

4  2  6 

Anomia shell   4  4 
Anisomyon shell   2  2 
Drepanocheilus 
shell 

  3  3 

Concretion    34 34 
Cementation    33 33 
Exterior 
Crystallization 

   6 6 

Total Number of 
Samples 

20 20 60 111 211 

 

The 211 samples investigated in the shell alteration portion of this study are divided into 
four suits, each with its own hypothesis to test.  Because the focus of most hypotheses is 
on ammonites, they are overrepresented in the dataset compared to Inoceramus, the only 
numerous bivalve genus for the sampling locations.  Nonetheless, a variety of genera are 
represented by the combined dataset. 
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TABLE 5–Limits for ICP-OES System. 

 Al Ca Fe K Mg Mn Na Sr 

Wavelength, 

nm 

396.153 315.887 238.204 766.490 285.213 257.610 589.592 407.771 

Detection 

Limit (ppm) 

1.60 5.87 0.35 0.39 0.38 0.05 1.08 0.01 

Limit of 

Quantitation 

(ppm) 

5.35 19.56 1.17 1.29 0.68 0.16 3.53 0.03 

 

Limits of quantitation for the ICP-OES system used in this study were approached for 
analyses of Fe, Mn, Mg, Sr, and Al.  These values are the concentrations below which no 
numerical data analysis should be performed.  All data with minor element concentions 
below the limit of quantitation were omitted from statistical analyses and regression 
trendlines.  Limits of detection express how much of the element must be present in the 
sample to produce results.  This threshold was crossed most frequently with Al. 
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2.3 Results 
   2.3.1 Mode of Preservation:  Results for the “Mode of Preservation” suite were 

obtained for all twenty samples (see Appendices A and B).  As Figure 2 displays, most of 

the samples cluster with δ18O ratios ranging from 0.50‰ to 5.00‰, with respect to PDB. 

 The δ13C values range from -5‰ to 6‰.  The Nymphalucina preserved in a Trask Ranch 

concretion is an exception with δ18O = -9.07‰ and δ13C = -13.0‰.  Likewise, the 

Placenticeras samples from Kremmling, Colorado, concretions were anomalous with 

δ18O ranging from -15‰ to -20‰ and δ13C from -7.44‰ to -3.99‰. 

In total, four of the five outliers were samples from concretions.  A t-test of 

independent samples with level of significance = 0.05 reveals significantly lighter δ18O in 

concretions and a strong relationship between concretions and lighter δ13C values (Table 

6). These statistical findings support the visual observation that, within the cluster of 

shell samples on the isotope cross-plot, there appears to be no pattern in the relative 

position of shale and concretion points.  Within the cluster of stable isotope data, the 

Inoceramus samples show the isotopically heaviest carbon signature (mean δ13C = 3.47 ± 

2.44‰), along with the isotopically lightest oxygen signature (mean δ18O = -3.38 ± 

1.31‰).  The Inoceramus found in Trask Ranch concretions had an isotopic signature 

closer to the Inoceramus found in Game Ranch shale than Game Ranch concretions.  

Conversely, the Baculites samples show the isotopically lightest carbon signature (mean 

δ13C = -0.73 ± 1.30‰), along with the isotopically heaviest oxygen signature (mean δ18O 

= -1.34 ± 1.09‰).  The Baculites found in Trask Ranch concretions had isotopic 

signatures closer to the Baculites found in Game Ranch concretions than Game Ranch 

shale.  The Placenticeras samples have similar carbon values (mean δ13C = -1.43 ± 
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0.43‰) as the Baculites, but intermediate oxygen values (mean δ18O = -2.58 ± 1.19‰) 

between the points for Baculites and Inoceramus specimens.  While there are only two 

points for Nymphalucina, they are closest to the light-carbon, heavy-oxygen Baculites.   

As in the isotopic data, in the minor element data, the outliers were from 

concretions.  All minor element concentration data shown in Figures 3 and 4 is expressed 

in mMol/Mol ratios with calcium.  The Kremmling Placenticeras and the Trask Ranch 

Nymphalucina represent outliers depleted in strontium and enriched in magnesium 

relative to Recent mollusks (Figure 3).  An Inoceramus shell sample was slightly 

enriched in magnesium (3.44 mMol/Mol) and a Baculites sample from Trask Ranch was 

enriched in both strontium and magnesium relative to Recent aragonitic shell material 

(Buchardt and Weiner, 1981).  Figure 4, a pair of radar charts, depicts minor element 

concentrations for all elements examined.  Each axis of a chart records the concentration 

of an element, in mMol/Mol, with lines connecting all data points for a given sample. 

Enrichment outliers for aluminum, iron, manganese, and strontium were present for the 

concretion samples, but not for the shale samples (however, in the latter, no aluminum 

concentration data could be obtained due to concentrations below the analytical detection 

level).  The outliers belong to four different samples, rather than to one sample that was 

highly altered.  In both concretions and shale, the mean K/Ca ratio was ~0.8 mMol/Mol, 

Na/Ca ratio was ~16 mMol/Mol, and Sr/Ca ratio was ~3 mMol/Mol.  The concretions 

had higher mean Fe/Ca ratios (8.3 ± 1.4 mMol/Mol vs. 1.12 ± 1.06 mMol/Mol), Mn/Ca 

ratios (5.1 ± 2.4 vs. 1.69 ± 1.23 mMol/Mol), and Mg/Ca ratios (6.2 ± 0.9 vs. 0.88 ± 0.94 

mMol/Mol).  The differences in magnesium and iron were the only statistically 

significant trends in the minor isotope ratios, as evaluated by one-tailed t-tests of 
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independent samples, 0.05 level of significance, reported in Table 2.  The lower mean 

concentration of manganese in the shale samples was nearly significant, with t = -1.7 

(critical t = -1.753) and the higher mean concretion of sodium in the shale samples was 

also nearly significant, with t = 1.4 (critical t = 1.746).   
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FIGURE 2—Mode of Preservation Stable Isotope Cross-Plot 

The plot of oxygen and carbon stable isotopes for the “Mode of Preservation” shell 
alteration suite, with color denoting genus and symbol type denoting location, clearly 
shows outlier data points for specimens preserved in concretions. 
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                     TABLE 6—Summary Statistics for Mode of Preservation Suite 

Alternate 
Hypothesis 

Type of 
Test 

N Mean,  
± standard 
deviation 

Calculated 
Value(s) 

Critical 
Value (95% 
confidence) 

Result 

Significantly 
lighter mean 
δ13C in 

concretions? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: -1.28± 6.81 
c: -2.74 ± 5.07  

t = 1.35 t = 1.75 Ho retained 

Significantly 
lighter mean 
δ18O in 

concretions? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: -2.04 ± 1.78 
c: -6.60 ± 6.74 

t = 4.76 t = 1.75 Ho rejected 

Significantly 
lower mean 

Fe/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

6s, 
11c 

s: 1.12 ± 1.06 
c: 8.3 ± 1.4 

t = -2.0 t = ±1.753 Ho rejected 

Significantly 
lower mean 

K/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: 0.731 ± 0.855 
c: 0.93 ± 0.20 

t = -0.64 t = ±1.746 Ho retained 

Significantly 
lower mean 

Mg/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: 0.88 ± 0.94 
c: 6.2 ± 0.9 

t = -2.8 t = ±1.746 Ho rejected 

Significantly 
lower mean 

Mn/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

6s, 
11c 

s: 1.69 ± 1.23 
c: 5.1 ± 2.4 

t = -1.7 t = ±1.753 Ho retained 

Significantly 
higher mean 

Na/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: 17.2 ± 4.1 
c: 14.0 ± 3.0 

t = 1.4 t = ±1.746 Ho retained 

Significantly 
higher mean 

Sr/Ca in shale? 

One-tailed t-
test 

(independent 
samples) 

9s, 
11c 

s: 2.85 ± 1.69 
c: 3.4 ± 0.74 

t = -0.43 t = ±1.746 Ho retained 

 
Summary statistics for the “Mode of Preservation” Suite show significantly lower Mg/Ca 
ratios in specimens preserved in shale and significantly lighter δ18O in specimens 
preserved in concretions.  The null hypothesis, that there is no significant difference in 
the mean between shale and concretion subsets, was retained for all other tests. All 
isotope ratios reported in ‰ versus PDB and all minor element ratios reported in 
mMol/Mol calcium.
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          FIGURE 3–Sr/Ca and Mg/Ca Ratios for “Mode of Preservation” Suite 

 

In the Sr/Ca-Mg/Ca minor element cross-plot, the majority of data points residing outside 
of the field for Recent aragonitic shell are from specimens in concretions.  These points 

are enriched in magnesium relative to Recent aragonitic shell.
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FIGURE 4–Radar Charts for Minor Element Concentrations in the  
“Mode of Preservation Suite” 

 

 

 
The minor element ratios for the concretion specimens show enrichment in iron, 
magnesium, and manganese relative to those taken from shale. 
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2.3.2 Shell Sampling Position:  Minor element concentrations for the “Shell 

Sampling Position” suite were obtained for all twenty samples (ten phragmacone-septum 

pairs).  Stable isotope results were obtained for eighteen of the samples (see Appendices 

A and B), with septum specimen 3S and phragmacone samples 2P unreliable, and 

therefore omitted, due to low mass spectrometer voltage, possibly from underweight 

samples.  These results may be seen in tabular form within Appendices A and B. 

 In the stable isotope cross-plot (Figure 5), the data cluster by genus.  The 

Placenticeras had the isotopically heaviest δ13C and the isotopically lightest δ18O, with  

-3.71‰ and -3.74‰, for the septum, and -2.91‰ and -2.67‰ for the phragmacone, 

respectively.  The Hoploscaphites had a similar δ18O, but lighter δ13C, with -3.69‰,  

-8.36‰ for the septum, and -3.64‰ and -7.46‰ for the phragmacone, respectively.  The 

isotopic signatures of the Baculites samples vary greatly, with mean δ13C and δ18O values 

of -6.22 ± 4.13‰ and -1.36 ± 2.35‰, respectively. 

The values recorded from each specimen often proved vastly different.  Three 

phragmacone and septum pairs (the Hoploscaphites and two Baculites specimens from 

the Trask Ranch) do have similar isotopic values; the remaining seven do not.  These 

pairs were analyzed using a statistical paired t-test for dependent samples, as shown in 

Table 7.  At the 0.05 significance level, the difference in δ13C between septum and 

phragmacone samples taken from the same specimen may be explained by random 

chance.  The difference in mean δ 18O is significant at the 0.05 level, with δ 18O from the 

phragmacones lighter than those from the septa.  It should be noted that the mean δ13C 

value is influenced by a Trask Ranch Baculites phragmacone sample, at the bottom of 

Figure 6, which is a statistical outlier with respect to the other phragmacone samples.  
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When the septum-phragmacone pair containing this point is removed, the t-score for the 

δ13C ratio increases, indicating a greater difference between phragmacone and septal 

samples, while the δ18O ratio decreases below the 0.05 level of statistical significance.  In 

addition, the δ13C ratio of the phragmacone samples increases from -5.09 ± 4.41‰ to -

3.72 ± 2.29‰ and the  δ18O ratio of the phragmacone samples increases from -7.03 ± 

2.96‰ to -6.73 ± 3.07‰.  While the statistical dependence of the samples upon each 

other precludes the ability to apply a t-test to the data subsets consisting of all 

phragmacone and all septal samples, it is clear from the means and the distribution of 

points in Figure 5 that the septal samples tend to have lower δ13C values. 

  In the graph of Sr/Ca versus Mg/Ca ratios (Figure 6), only two data points fall 

within the limits established for Recent aragonitic shell.  These points are both 

phragmacone samples: one a Placenticeras from Game Ranch and the other a 

Hoploscaphites from Trask Ranch.  The septum of the aforementioned Placenticeras is 

an outlier strongly enriched in strontium (Sr/Ca = 16.4 mMol/Mol), while all other 

samples have Sr/Ca ratios between 2 and 5 mMol/Mol, values on the lower end of the 

range for Recent aragonitic shell.  There is no difference between Sr/Ca ratios between 

corresponding septal and phragmacone samples to the 0.05 level of significance with a 

two-tailed t-test of dependent samples (Table 7).  Likewise, there is no significant 

difference in Mg/Ca ratio, though in this instance the t-score is much higher (t = -1.9 

versus critical t = ±2.262).  The greater t-score is expected because of the high standard 

deviation of the Mg/Ca ratios within the “Shell Testing Location” suite and the large span 

of data points along the y-axis of Figure 6.  Most of the data points in the suite are 

relatively enriched in magnesium, up to Mg/Ca = 48.9 mMol/Mol, without any statistical 
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outliers. 

 Statistical outliers do exist for the Fe/Ca, Na/Ca, and Sr/Ca ratios of the Kremmling, 

Colorado, Placenticeras sample, the first two ratios for both phragmacone and septum 

and the last ratio for the septum alone.    Another outlier was the enriched Sr/Ca of the 

Game RanchPlacenticeras septum.  These outliers may be seen graphically as the 

endpoints on the radar diagrams in Figure 7.  Interestingly, the Placenticeras data that 

contain the statistical outliers also show the greatest mismatch between the chemical 

content of phragmacone and septal samples within a pair.  All other pairs show similar 

chemical profiles, with peaks greater than 5 mMol/Mol for magnesium, sodium and, for 

the Colorado specimens and South Dakota Hoploscaphites, manganese.  Small peaks, 

with concentrations less than or equal to 10 mMol/Mol Ca, also occur for iron in the 

South Dakota specimens.  When the large Fe/Ca ratio of the Kremmling Placenticeras is 

removed from the data, a statistically significant difference in the Fe/Ca ratio for 

phragmacone-septum pairs emerges.  Figure 7 reveals the difference to be a relative 

enrichment of iron for the septal samples. 

  Comparing the differences in isotopic ratios to the minor element data, several 

trends emerge.  First, specimens with enriched magnesium and/or manganese -- such as 

the Game Ranch Placenticeras and the second, third, and fourth Trask Ranch Baculites – 

also had large differences between the isotopic signatures of their septa and 

phragmacones.  However, the Trask Ranch Hoploscaphites specimen was enriched in 

magnesium but did not display a substantial difference between phragmacone and septal 

isotopic signatures and the fifth Trask Ranch Baculites specimen showed a fairly wide 

span of values on the isotope cross-plot without high magnesium or manganese 
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concentrations.  The similarity in minor element distributions (overall shape of the radar 

chart polygon) is a better predictor of isotopic similarity than the numeric concentrations 

of minor elements.  The best matches, as seen in Figure 7, are the Trask Ranch 

Hoploscaphites and the first and sixth Trask Ranch Baculites, and these are also the pairs 

that are closest together on the isotope cross-plot.  The poorly-matched septal and 

phragmacone samples of the Game Ranch Placenticeras specimen correlate with a 

moderately high difference in δ13C and δ18O.  The Trask Ranch Baculites samples that 

were isotopically different had the same minor element distribution, with peaks in Fe, 

Mg, and Na, but the phragmacone and septal samples within a pair differed in their 

concentrations of these elements.  Unfortunately, no isotopic data was available for the 

Kremmling specimens, which matched poorly in minor element distribution and would 

have provided useful comparisons. 
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FIGURE 5—Shell Sampling Position Stable Isotope Cross-Plot 

 

This plot shows oxygen and carbon stable isotopes for the “Shell Sampling Position” 
shell alteration suite, with color denoting genus, symbol shape denoting location, and 
symbol fill denoting septum versus phragmacone sampling.  Quite frequently, 
phragmacone-septum pairs are isotopically different from each other. 
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TABLE 7 –Summary Statistics for “Shell Sampling Position” Suite 

Alternate 
Hypothesis 

Type of 
Test 

N Means, ± standard 
deviations 

Calculated 
Value(s) 

Critical 
Value (0.05) 

Result 

Difference in 
δ13C values of 

septum-
phragmacone 

pairs? 

Paired  
t-test 

(dependent 
samples) 

8s, 
8p 
 

6s, 
6p 

p: -5.09 ± 4.41 
s: -7.03 ± 2.96 

Without outlier:  
p: -3.72 ± 2.29 
s: -6.73 ± 3.07 

t = 1.21 
 

t = 1.77 
 

t = ± 2.365 
 

t = ±2.571 

Ho 
retained; 

Ho 
retained 

Difference in 
δ18O values of 

septum-
phragmacone 

pairs? 

Paired  
t-test 

(dependent 
samples) 

8s, 
8p 
 

6s, 
6p 

p: -2.35 ± 0.74 
s: -2.92 ± 0.82  

Without outlier:  
p: -2.42 ± 0.77 
s: -2.91 ± 0.89 

t = 3.04 
 

t = 2.02 

t = ± 2.365 
 

t = ±2.571 

Ho 
rejected; 

Ho 
retained 

Difference in 
Al/Ca of septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

8p, 
8s 
 

7s, 
7p 

p: 4.633 ± 4.579 
s: 6.047 ± 6.200 
Without outliers:  
p: 2.960 ± 1.921 
s: 4.318 ± 2.428 

 t = -12.82 
 

t = -7.590 

t = ±2.365 
 

t = ±2.447 

Ho 
rejected; 

Ho 
rejected 

Difference in 
Fe/Ca of septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 6.1 ± 11.5 
s: 8.6 ± 7.4 

Without outliers:  
p: 2.80 ± 3.05 
s: 5.64 ± 2.51 

t = -1.3 
 

t = 2.64 

t = ±2.262 
 

t = ±2.571 

Ho 
retained; 

Ho 
rejected 

 
Difference in 

K/Ca of septum-
phragmacone 

pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 0.07 ± 0.03 
s: 0.1 ± 0.2 

Without outliers:  
p: 0.07 ± 0.02 
s: 0.07 ± 0.03 

t = -1 
 

t = 0.8 

t = ±2.262 
 

t = ±2.306 

Ho 
retained; 

Ho 
retained 

Difference in 
Mg/Ca of 
septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 14.5 ± 13.9 
s: 20.4 ± 10.5 

Without outliers:  
p: 15.7 ± 14.8 
s: 21.5 ± 10.5 

t =  
-1.9 

 
t = -1.5 

t = ±2.262 
 

t = ±2.306 

Ho 
retained; 

Ho 
retained 

Difference in 
Mn/Ca of 
septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 4.3 ± 5.7 
s: 5.5 ± 4.0 

Without outliers:  
3.5 ± 4.9 
4.8 ± 4.2 

t = -1.16 
 

t = 1.81 

t = ±2.262 
 

t = ±2.306 

Ho 
retained; 

Ho 
retained 

Difference in 
Na/Ca of septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 19.8 ± 12.6 
s: 22.7 ± 11.9 

Without outliers:  
p: 22.2 ± 12.7 
s: 21.9 ± 12.4 

t = -0.55 
 

t = 0.050 

t = ±2.262 
 

t = ±2.306 

Ho 
retained; 

Ho 
retained 

Difference in 
Sr/Ca of septum-

phragmacone 
pairs? 

Paired  
t-test 

(dependent 
samples) 

10p, 
10s 

 
8p, 
8s 

p: 2.69 ± 1. 21 
s: 6.1 ± 6.5 

Without outliers:  
p: 2.83± 1.14 
s: 3.10 ± 1.04 

t =  
1.6 

 
t = 0.855 

t = ±2.262 
 

t = ±2.306 

Ho 
retained; 

Ho 
retained 

Significant relationships exist for δ18O, Al/Ca, and Fe/Ca.  For other tests, the null 
hypothesis of no difference in means between septa and phragmcones is retained.  All 
isotope ratios reported in ‰ versus PDB; all minor element ratios reported in mMol/Mol. 
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FIGURE 6—Shell Sampling Position Sr/Ca-Mg/Ca Cross-Plot 

 
Very few of the samples for the “Shell Sampling Position” suite fall within the Mg/Ca 
and Sr/Ca limits for Recent aragonitic shell.  As in the isotopic data, the phragmacone 
and septum samples may differ in their chemical composition. 
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FIGURE 7—Radar Charts for Minor Elements in “Shell Sampling Position” Specimens 

 
Most phragmacone-septum pairs share patterns in minor elements though amounts differ. 
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2.3.3 Shell Color Suite: Two aspects of shell color were investigated in this study: 

the presence or absence of an opalescent luster and the color of the shell.  A suite of 60 

specimens was assembled, with 20 samples per collection site and representatives of all 

genera (see Appendices A and B).  For each genus at each location, specimens of at least 

two different colors were sampled.  Twelve samples, including representatives of 

Placenticeras, Baculites, Hoploscaphites, and Inoceramus, could be classified as 

opalescent.  These genera were also represented in non-opalescent shell, along with 

additional genera Nymphalucina, Anomia, Drepanocheilus, and Anisomyon.  All genera 

in the study were thus represented in the “Shell Color” suite.   

 As Figure 8 illustrates, the majority of the samples from opalescent shells, 

including those from the opalescent 10YR3/6, opalescent 5Y8/9, opalescent 7.5YR6/7, 

and opalescent N9 color classes cluster between δ13C values ranging from 5‰ to -5‰ 

and δ18O values spanning 0‰ to -4‰ (See Table 8 for color designations).  A single 

outlier is the Kremmling Placenticeras sample, with δ18O and δ13C values of -15.01‰ 

and -6.99‰, respectively.  The non-opalescent shell samples show a greater range of 

values, but tend to cluster into two subsets as defined by δ18O.  All of the members of the 

relatively δ18O-depleted cluster are from Kremmling (whereas only two members of the 

relatively δ18O-enriched cluster are).  Therefore, the Colorado and South Dakota 

specimens were separated during statistical analysis (Tables 9 and 10).  The δ13C and 

δ18O averages became heavier when the Kremmling points were removed, with an 

opalescent shell δ13C average of -2.08 ± 2.47‰ (versus -3.43 ± 3.97‰ when including 

Kremmling data) and δ18O average of -1.53 ± 1.95‰ (versus -2.27 ± 1.04‰).  The non-



www.manaraa.com

 

44 

opalescent shell δ13C average was -1.64 ± 5.71‰ (versus -3.07 ± 5.38‰ when including 

Kremmling data), and the δ18O average was 3.61 ± 1.87‰  (versus -6.98 ± 5.22‰).  In 

most instances, the standard deviation also decreases when the Kremmling data is 

removed, though this effect is more marked for the oxygen than carbon data.  The one-

tailed t-tests for independent samples calculated for the opalescent and non-opalescent 

shell reveal no significant differences in the δ18O or δ13C ratios.  The extremely low δ13C 

t-score (0.011) for the South Dakota data suggests that the variation in the data was 

caused by the difference between South Dakota and Colorado isotopic signatures.  

However, the t-score for δ18O is greater, indicating that opalescent shell has heavier δ18O, 

but not at a level of statistical significance.  Indeed, in Figure 8, the opalescent samples, 

designated by square boxes, tend to cluster towards heavier δ18O.  

 When examining the minor element ratios with respect to shell opalescence, few 

important results emerged.  Using one-tailed t-tests at the 0.05 significance level, lower 

mean Mg/Ca, Mn/Ca, and Sr/Ca ratios were found for the opalescent shell of the full 

dataset.  Another relatively strong relationship existed for higher Sr/Ca ratios in the 

opalescent shell.  These conclusions were not true for the data subset containing only 

South Dakota collection sites so likely reflect the contribution of the Kremmling samples 

to the non-opalescent shell, which dominate the low-Sr/Ca, high-Mg/Ca region of the 

Sr/Ca-Mg/Ca plot shown as Figure 9.  The opalescent shell instead resides below or near 

the Mg/Ca limit for Recent aragonitic shell, and shows little Sr/Ca depletion. 

 When the isotopic and minor element data are examined to see if groupings 

defined by shell color contributed to variation in the data, most null hypotheses cannot be 

statistically rejected, both in the complete and South Dakota datsets (Table 10).  There 
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are statistically significant differences in mean K/Ca and Mn/Ca for the South Dakota 

dataset, and a difference in Mg/Ca for both datasets.  Statistically insignificant but 

notable relationships include the differences in δ18O (F = 1.94 versus critical F = 2.071), 

Al/Ca (F = 2.26 versus critical F = 2.477), and Sr/Ca (F = 1.59 versus critical F = 2.044), 

all for the complete datasets.  Among the South Dakota specimens, the highest 

insignificant F-statistic was Na/Ca (F = 1.6 versus critical F = 2.321). 

 A graphical analysis of color with respect to genus is presented in Table 11.  

There is a degree of variability for colors in unaltered shell (with “unaltered” here 

defined as shell bearing Sr/Ca and Mg/Ca ratios analogous to Recent aragonitic shell).  

For instance, Inoceramus may display one of many colors (10YR8/1, 7.5YR8/2, 

opalescent N9, and 7.5YR9/2), whereas Hoploscaphites has a much narrower range of 

colors (10YR6/7, and sometimes 10YR7/8).  Examining the isotope and minor element 

cross-plots, darker colors are associated with Inoceramus and Hoploscaphites, whereas 

lighter colors are associated with Baculites and Placenticeras.  This observation suggests 

that the color of less-altered shell is influenced by a genus-level trait. 
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TABLE 8–Descriptive Names for Munsell Designations of Shell Color Classes 

 
Descriptive Color Class Name Munsell Designation 
Dark Brown 10YR3/6 
Cream 7.5Y9/4 
Grey 10YR8/1       
Light Grey-Tan 7.5YR8/2 
Light Brown 10YR7/8 
Orange 10YR7/11 
Light Cream 7.5Y9/2 
DarkTan 10YR6/7 
Light Tan 5Y8/5 
White N9 
Yellow 5Y8/9 

 
The color descriptive terms used in this paper were selected because they create a more 
specific mental image of color than the color names associated with the Munsell 
designations listed above. Approximations of these colors may be seen in the data points 
in Figures 8 and 9.  
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              TABLE 9–Summary Statistics for ‘Shell Color’ Suite: Shell Opalescence 

Alternate 
Hypothesis 

Type of 
Test 

N Means,  
± std. dev.s 

Calculated 
Value(s) 

Critical Val. 
(0.05 sig.) 

Result 

Lower mean δ13C 
in non-opalescent 

shell? 

One-tailed  
t-test of 

independent 
samples 

11o, 
44n 

 
10o, 
28n 

o: -2.08 ± 2.47 
n: -2.82 ± 4.54 

South Dakota only: 
o: -1.58 ± 1.95 
n: -1.64 ± 5.71 

t = 0.149 
 
 

t =  0.011 

t = 1.674 
 
 

t = 1.688 

Ho 
retained 

 
Ho 

retained 
Lower mean δ18O 
in non-opalescent 

shell? 

One-tailed  
t-test of 

independent 
samples 

11o, 
44n 

 
10o, 
28n 

o: -3.43 ± 3.97 
n: -6.98 ± 5.22 

South Dakota only: 
o: -2.27 ± 1.08 
n: -3.61 ± 1.87 

t =  0.765 
 
 

t =  0.877 

t = 1.674 
 
 

t = 1.688 

Ho 
retained 

 
Ho 

retained 
Lower mean 

Al/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

5o, 
28n 

 
5o, 
15n 

o: 3.47 ± 2.14 
n: 5.8 ± 6.2 

South Dakota only:  
o: 2.78 ± 2.52 

n: 3.0 ± 2.6 

t = -0.73 
 
 

t = -0.17 

t = -1.696 
 
 

t = -1.734 

Ho 
retained 

 
Ho 

retained 
Lower mean 

Fe/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
48n 

 
11o, 
29n 

o: 8.5 ± 11.8 
n: 10.5 ± 20.1 

South Dakota only: 
o: 9.3 ± 12.3 
n: 9.0 ± 24.9 

t = -0.32 
 
 

t = 0.039 
 

t = -1.672 
 
 

t = -1.686 

Ho 
retained 

 
Ho 

retained 
Lower mean 

K/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
48n 

 
11o, 
29n 

o: 0.07 ± 0.05 
n: 0.08 ± 0.07 

South Dakota only: 
o: 0.07 ± 0.05 
n: 0.06 ± 0.03 

t = -0.5 
 
 

t = 0.6 

t = -1.672 
 
 

t = -1.686 

Ho 
retained 

 
Ho 

retained 
Lower mean 

Mg/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
48n 

 
11o, 
29n 

o: 6.1 ± 8.1 
n: 14.1 ± 12.3 

South Dakota only: 
o: 6.6 ± 8.5 

n: 13.5 ± 16.4 

t = -2.1 
 
 

t = -1.3 

t = -1.672 
 
 

t = -1.686 

Ho 
rejected 

 
Ho 

retained 
 Lower mean 

Mn/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
46n 

 
10o, 
28n 

o: 3.4 ± 3.4 
n: 7.0 ± 5.5 

South Dakota only: 
o: 4.087 ± 10.065 
n: 4.483 ± 4.757 

t = -2.1 
 
 

t = -0.24 

t = -1.673 
 
 

t = -1.688 

Ho 
rejected 

 
Ho 

retained 
Higher mean 

Na/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
48n 

 
11o, 
29n 

o: 18.3 ± 14.0 
n: 16.0 ± 27.0 

South Dakota only: 
o: 19.9 ± 11.4 
n: 20.1 ± 31.6 

t = 0.278 
 
 

t = -0.018 

t = 1.672 
 
 

t =1.686 

Ho 
retained 

 
Ho 

retained 
Higher mean 

Sr/Ca in 
opalescent shell? 

One-tailed  
t-test of 

independent 
samples 

12o, 
48n 

 
11o, 
29n 

o: 3.28 ± 0.75 
n: 2.35 ± 2.60 

South Dakota only: 
o: 3.57 ± 0.62 
n: 3.23 ± 1.62 

t = 1.9 
 
 

t = 0.68 

t = 1.672 
 
 

t = 1.686 

Ho 
rejected 

 
Ho 

retained 
The null hypothesis, that there is no difference in the means of the opalescent and non-

opalescent data sets, holds for most tests in this sampling suite.  All isotope ratios 
reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium. 
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                 TABLE 10– Summary Statistics for ‘Shell Color’ Suite: Shell Color 
Alternate 

Hypothesis 
Type of 

Test 
N Overall means,  

± average standard 
deviations 

Calculated 
Value(s) 

Critical 
Value (0.05 
significance) 

Result 

Difference in 
mean δ13C 

among shell hue 
classes? 

F-statistic 52 
 

34 

-3.04 ± 5.45 
 

South Dakota only:  
-1.63 ± 5.83 

F = 0.495 
 
 

F = 0.443 

F= 2.071 
 
 

F = 2.337 

Ho 
retained 

 
Ho 

retained 
Difference in 

mean δ18O 
among shell hue 

classes? 

F-statistic 52 
 

34 

-6.92 ± 4.40 
 

South Dakota only:  
-3.65 ± 1.43 

 

F = 1.940 
 
 

F = 1.345 

F= 2.071 
 
 

F = 2.337 

Ho 
retained 

 
Ho 

retained 
Difference in 
mean Al/Ca 

among shell hue 
classes? 

F-statistic 28 
 

15 

6.46 ± 4.25 
 

South Dakota only: 
4.30 ± 3.95  

 

F = 2.26 
 
 

F = 1.62 

F = 2.477 
 

F = 3.478 

Ho 
retained 

 
Ho 

retained 
Difference in 
mean Fe/Ca 

among shell hue 
classes? 

F-statistic 57 
 

35 

9.8 ± 9.9 
 

South Dakota only:  
15.4 ± 12.1 

 

F = 0.42 
 
 

F = 0.674 

F = 2.044 
 
 

F = 2.321 

Ho 
retained 

 
Ho 

retained 
Difference in 
mean K/Ca 

among shell hue 
classes? 

F-statistic 57 
 

35 

1.89 ± 1.24 
 

South Dakota only: 
3.33 ± 2.59 

 

F = 0.977 
 
 

F = 8.25 

F = 2.044 
 
 

F = 2.321 

Ho 
retained 

 
Ho 

rejected 
Difference in 
mean Mg/Ca 

among shell hue 
classes? 

F-statistic 57 
 

35 

14.5 ± 10.3 
 

South Dakota only:  
21.9 ± 10.0 

F = 3.21 
 
 

F = 7.78 

F = 2.044 
 
 

F = 2.321 

Ho 
rejected 

 
Ho 

rejected 
Difference in 
mean Mn/Ca 

among shell hue 
classes? 

F-statistic 55 
 

34 

6.8 ± 4.4 
 

South Dakota only:  
10.3 ± 5.9 

F = 1.3 
 
 

F = 6.9 

F = 2.054  
 
 

F = 2.337 

Ho 
retained 

 
Ho 

rejected 
Difference in 
mean Na/Ca 

among shell hue 
classes? 

F-statistic 57 
 

35 

15.9 ± 9.2 
 

South Dakota only:  
25.2 ± 8.9 

F = 1.3 
 
 

F = 1.6 

F = 2.044 
 
 

F = 2.321 

Ho 
retained 

 
Ho 

retained 
Difference in 
mean Sr/Ca 

among shell hue 
classes? 

F-statistic 57 
 

35 

2.47 ± 1.26 
 

South Dakota only: 
4.11 ± 2.76 

 

F = 1.59 
 
 

F = 1.01 

F = 2.044 
 
 

F = 2.321 

Ho 
retained 

 
Ho 

retained 
Mean Mg/Ca and Mn/Ca statistically differs with respect to shell color.  For all other 
elements, the null hypothesis, that the mean values do not differ by color grouping, holds. 
All isotope ratios reported in ‰ vs. PDB; all minor element ratios reported in 
mMol/Mol. 
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FIGURE 8—Shell Color Stable Isotope Cross-Plot 

 
 

The opalescent shell clusters at isotopically heavy δ18O and intermediate δ13C relative to 
other shell.  No clearly-defined pattern exists in relation to shell color and isotopes. 

FIGURE 9—Shell Color Sr/Ca-Mg/Ca Cross-Plot 
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Samples from specimens with a light color, without yellow tones, have low Mg/Ca ratios.
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TABLE 11—Colors for Unaltered Shell, by Genus 
 
 Placenticeras Hoploscaphite

s 
Baculites Inoceramus Anomia Nymphalucin

a 
Anisomyon Drepanocheilus 

10YR3/6   o +     
7.5Y9/4 - - -   +   
10YR8/1   
    

   + -   - 

7.5YR8/2 + - + +     
10YR7/8 - o  o     
Opalescen
t 10YR8/1 

 -       

Opalescen
t  
7.5Y9/2 

  +      

Opalescen
t N9 

-  + +     

Opalescen
t 5Y8/9 

+        

10YR7/11  -  -   -  
7.5Y9/2   - + - + - - 
5Y8/5 - +   -    
N9  - - o    - 
5Y8/9 -  -      
 
Key: + = majority of samples fell within Sr/Ca and Mg/Ca ranges for Recent molluscs 
         - = majority samples fell outside of Sr/Ca and Mg/Ca ranges for Recent molluscs 
        o = equal number of samples within and outside of ranges 
 
Based on the Mg/Ca and Sr/Ca ranges for Recent aragonitic (and, in the case of Anomia, 
calcitic) shell, unaltered shell may come in several colors.  The colors for unaltered shell 
depend in part on genus, with some genera, such as Inoceramus, having many colors for 
unaltered shell, while others, like Placenticeras, having fewer. 
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2.3.4 Cementation Suite: In the cementation suite, two questions pertaining to 

shell alteration were addressed.  The first of these is whether the presence of cement, 

crystals precipitated within the phragmacone or growing upon the septa of ammonite 

shells, mirrors altered minor element concentrations and/or isotopic signatures.  The 

second question is whether, for each sample site investigated, there is a difference 

between the minor element concentrations and/or isotopic signatures for cements, 

concretions, and shell.  Significant differences in mean isotopic and/or minor element 

values among the cements, concretions, and shell could serve as indicators for sample 

contamination.  For instance, if samples were taken from a Hoploscaphites for 

sclerochronology, and one showed minor element concentrations intermediate between 

unaltered shell samples and the concretion, concretion material was likely contaminating 

the sample and the isotopic data should therefore be disregarded. 

A pair of radar charts showing the concentrations of minor elements (Figure 10), 

in mMol/Mol calcium, shows that shell taken from cemented specimens may have higher 

concentrations of iron, magnesium, and sodium than shell taken from uncemented 

samples.  The greatest Mg/Ca and Fe/Ca ratios are for the Game Ranch specimens, with 

Trask Ranch specimens having the greatest Na/Ca ratio and the second-highest Mg/Ca 

and Fe/Ca ratios.  As Figure 11A shows, the average minor element compostion of the 

cement at the Game Ranch is highly enriched in iron and magnesium relative to the 

average shell from that location.  The cement in the Trask Ranch, however, has a lower 

concentration of sodium than the average for the shell (Figure 11B).  Kremmling cements 

show a relatively low concentration of all minor elements. 

Shell material for samples that were not in the “Cementation Suite” were selected 
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from shells that were not infilled with cement.  These shell samples were added to the 

“Cementation Suite” data to statistically evaluate the differences between cemented and 

uncemented shell material.  The only statistically significant difference with respect to 

minor element concentrations was the lower mean Mg/Ca concentration in uncemented 

specimens (Table 12).  Other moderately strong relationships, using a one-tailed t test at 

0.05 significance, were the lower Al/Ca ratio in uncemented specimens (t = 0.93 versus 

critical t = 1.663) and lower Na/Ca ratio in uncemented samples (t = 0.96 versus critical t 

= 1.656).  Isotopically, there was a significant difference in the δ13C ratio of shell with 

and without cementation, with lower average δ13C values for the cemented shells.    At  

t = 3.80 versus critical t = 1.656, this is the strongest relationship in the examination of 

cemented and uncemented shell.  The oxygen isotope ratio produced the weakest 

statistical relationship and was, therefore, significantly not affected by cementation. 

 Figures 12, 13, and 14 display the Sr/Ca-Mg/Ca and δ18O - δ13C cross-plots for 

the Kremmling, Game Ranch, and Trask Ranch sites, respectively.   In the Kremmling, 

plot (Figure 12), the samples from cemented specimens seen directly to the right of the 

cement samples are the shells lowest in Sr/Ca and, thus, furthest from the limit for Recent 

aragonitic shell.  These points have lower δ18O and higher δ13C than the uncemented 

samples.  Their δ13C is comparable with that for cement, whereas their δ18O values are 

intermediate between the cement and samples from uncemented shells.  For the Game 

Ranch site, isotopic data for the cement samples was not available due to low voltage on 

the mass spectrometer.  Therefore, comparisons can only be made with respect to 

external crystallization.  Shells with external recrystallization or cement had lower δ13C 

values than the samples from uncemented shell and δ18O values among the lowest for 
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shell (Figure 13).  Two of three samples from shells bearing external recrystallization or 

cement had Sr/Ca-Mg/Ca profiles identical to shell without such precipitation; the third 

had a Sr/Ca-Mg/Ca profile similar to the concretions. The Trask Ranch data shows the 

samples from cemented and uncemented shell intermixed on the Sr/Ca-Mg/Ca plot 

(Figure 14).  On the other hand, the isotope cross-plot clearly shows the samples from 

shell with cement intermediate between samples from uncemented shell and the subset of 

cement samples that are low in δ13C.  The samples from cemented shell appear to be 

dispersed along a line extending from the cluster of uncemented shell to the low δ18O and 

δ13C ratios of the cement.  A linear fit of y = 0.892x – 4.286 links both cement and 

cemented shell with an r2 = 0.730. 

 In order to properly compare samples from cemented shell, cement, and 

concretions, it must be determined if a significant difference exists between for each 

sampling location.  A series of paired t-tests for dependent samples, reported in Tables 

13-15, seeks to address this issue.  All samples are from specimens that contained shell, 

concretion, and cement (or, in the case of the Game Ranch, externally precipitated 

cement or recrystallization).  Al/Ca was omitted from the analysis of the Kremmling site 

because of scarce data.   

 Partly because the standard deviations are relatively low, within the Kremmling 

data, the difference in the means of K/Ca and Mn/Ca ratios seen in Figure 11B are 

statistically significant.  The smaller difference in means for Sr/Ca of the shell and 

cement samples implies that, while positioned completely to the right (higher Sr/Ca) of 

the cement in Figure 12, the shell samples are not statistically distinct.  The δ13C values 

for shell were significantly heavier than those for cement.  When comparing shell to 
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concretion, the shell was significantly lower in Fe/Ca, K/Ca, Mg/Ca, and significantly 

higher in Na/Ca and Sr/Ca.  Thus, on the Figure 12 Sr/Ca-Mg/Ca cross-plot, the 

concretions appear as a cluster with higher Mg/Ca and lower Sr/Ca than any of the shell 

samples.  The remainder of the elements can be visually compared using Figure 11B; 

although this graph shows only the mean values, differences can be easily noted for all 

statistically significant minor element concentrations except the Na/Ca ratio.  There was 

no significant difference between the isotopic signature of shell and concretion for 

Kremmling, as can be seen by the intermixed data points in Figure 12. 

 The only statistically significant difference between and shell and concretion for 

the Game Ranch, South Dakota, data is lower δ13C for the concretions.  This can be seen 

in Figure 13 where the data points for the three concretion samples reside clearly below 

the shell data points.  These points are isotopically heavier in δ18O than the majority of 

the shell samples, so a fairly high t-score (t = 1.54 versus critical t = 2.132) results.  Other 

strong relationships include lower Fe/Ca (t = -2.0), K/Ca (t = -1.80), Mg/Ca (t = -2.13), 

and Mn/Ca (t = -1.5) in shell, all with critical t = -2.13.  The samples of external 

recrystallization or cement and interior cement compare with both concretions and shell 

by having much higher mean minor element concentrations, especially Fe/Ca, K/Ca, and 

Mg/Ca (Figure 11A). 
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Specimens recovered from Trask Ranch show two types of cements.  For 

simplicity, these will be referred to as the Cement-1 and Cement-2 subsets.  Cement-2 

samples have lower Al/Ca and Mg/Ca, but higher Sr/Ca, than Cement-1 samples, and 

appear along the regression line with shell in the isotope cross-plot in Figure 14.  A shift 

towards isotopically lighter δ13C values is accompanied by a shift towards lighter δ18O 

values.  Cement-1 samples appear with concretion samples on the aforementioned graph. 

 For these samples, a shift toward isotopically lighter δ13C values is not correlated with 

any change in δ18O.  Cement-1 samples cannot be distinguished by appearance in hand 

sample, and use of thin sections would be advantageous for futher study.  Using paired t-

tests for dependent samples, 0.05 level of significance, cemented shell shows 

significantly higher Na/Ca and Sr/Ca than Cement-1, as well as lighter δ18O.  This shell 

also has significantly lighter δ13C.  Though not statistically significant, the Mn/Ca values 

were lower for shell (t = -1.9 versus critical t = 2.132).  When compared instead to 

Cement-2, shell has significantly lower Fe/Ca, Mg/Ca, and Mn/Ca, and higher Na/Ca and 

Sr/Ca.  Other strong relationships include Al/Ca (t = 1.1 versus critical t = 1.860), which 

is higher in shell, and Mg/Ca (t = -1.72 versus critical t = -1.860), which is lower.  

Isotopically, as shown in Figure 16, shell is significantly heavier than Cement-2 with 

respect to carbon but shows no significant difference with respect to oxygen (t = 1.25 

versus critical t = 1.895).  Lastly, comparing shell from the cemented samples with their 

concretions, it has lighter δ13C and heavier δ18O (as visible in Figure 14); lower Al/Ca, 

Fe/Ca, K/Ca, Mg/Ca, Mn/Ca; and higher Na/Ca and Sr/Ca.  The results for all of these 

comparisons, with the exception of Sr/Ca, are statistically significant. 

FIGURE 10— Radar Charts for Minor Elements in Cemented and Uncemented Shell 
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Cemented shell appears to have higher possible concentrations of Fe, Mg, and Na.  
However, because n = 7 for the uncemented specimens in the “Cementation” suite, the 
dataset must be expanded into other suites to make more robust comparisons. 
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FIGURE 11—Minor Element Content of “Cementation Suite” Samples 
 

 
Figure 11A shows a very large enrichment in Fe/Ca, Mg/Ca, and Mn/Ca ratios for 

cements and external recrystallization or cement from the Game Ranch locality.
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Figure 11B eliminates the Game Ranch interior cement and external recrystallization or 

cement samples, so the minor element ratios of the other cementation suite 
materials become apparent.  There are higher Mg/Ca ratios, and sometimes Fe/Ca 

ratios, in concretions than in shell. 
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        TABLE 12—Summary of Statistical Tests on Cemented and Uncemented Shell 
 

 
The cemented shell shows lighter δ13C and higher Mg/Ca ratios than uncemented shell.  
For all other tests, the null hypothesis of no significant difference in mean minor element 
concentrations or isotopic values between cemented and uncemented shell must be 
retained.  Beyond the level of statistical significance, cemented shell shows lower Na/Ca 
and higher Al/Ca than uncemented shell.  All isotope ratios reported in ‰ versus PDB 
and all minor element ratios reported in mMol/Mol calcium.

Alternate 
Hypothesis 

Type of 
Test 

N Means,  
± standard 
deviations 

Calculated 
Value(s) 

Critical 
Value (0.05 
significance) 

Result 

Lighter  mean 
δ13C in cemented 

shells? 

one-tailed 
t test 

100u, 
30c 

u: -3.45 ± 4.85 
c: -7.065 ± 3.410 

t = 3.80 t = 1.656 Ho 
rejected 

Lighter  mean 
δ18O in cemented 

shells? 

one-tailed 
t test 

100u, 
30c 

u: -5.80 ± 5.27 
c: -5.62 ± 5.00 

t = -0.169 t = 1.656 Ho  
retained 

Lower  mean 
Al/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

59u, 
27c 

u: 5.4 ± 5.9 
c: 4.2 ± 3.1 

t = 0.93 t = -1.663 Ho  
retained 

Lower  mean 
Fe/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

101u, 
36c 

u: 8.8 ± 15.5 
c: 8.1 ± 9.2 

t = 0.2 t = -1.656 Ho  
retained 

Lower  mean 
K/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

106u, 
37c 

u: 1.76 ± 1.82 
c: 1.89 ± 1.34 

t = -0.41 t = -1.656 Ho  
retained 

Lower  mean 
Mg/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

106u, 
37c 

u: 11.5 ± 12.4 
c: 18.1 ± 15.2 

t = -2.63 t = -1.656 Ho  
rejected 

Lower  mean 
Mn/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

101u, 
37c 

u: 5.5 ± 5.2 
c: 6.0 ± 5.2 

t = -0.48 t = -1.656 Ho  
retained 

Higher  mean 
Na/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

106u, 
37c 

u: 16.9 ± 9.9 
c: 15.1 ± 9.5 

t = 0.96 t = 1.656 Ho  
retained 

Higher  mean 
Sr/Ca in 

uncemented 
specimens? 

one-tailed 
t test 

106u, 
37c 

u: 3.0 ± 2.8 
c: 2.8 ± 1.9 

t = 0.36 t = 1.656 Ho  
retained 
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FIGURE 12—Comparison of Cements, Concretions, and Shell Material for Kremmling 
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FIGURE 13—Comparison of External Recrystallizations or Cements, Concretions, and 
Shell Material for Game Ranch 
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FIGURE 14—Comparison of Cements, Concretions, and Shell Material for Trask Ranch  
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TABLE 13—Statistical Tests for Kremmling Cements, Concretions, and Shell 
Alternate 

Hypothesis 
Type  

of Test 
N Means,  

± standard  
deviations 

Calcula-
ted 

Value(s) 

Critical 
Value 
(0.05 

signif.) 

Result 

Heavier mean 
δ13C in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: -5.45 ± 2.03 
co: -9.01 ± 3.01 
ce: -8.64 ± 1.99 

t(s-co) =  
-0.433 

 
t(s-ce) = 

-3.11 

t(s-co) =  
-1.895 

 
t(s-ce) =  
-1.895 

Ho retained 
Ho rejected 

Heavier mean 
δ18O in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: -13.52 ± 5.74 
co: -12.49 ± 1.28 
ce: -13.00 ± 3.83 

t(s-co) = 
 -0.909 

 
t(s-ce) =  
-0.476 

t(s-co) =  
-1.895  

 
t(s-ce) =  
-1.895 

Ho retained 
Ho retained 

Lower mean 
Fe/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 12.9 ± 6.4 
co: 19.4 ± 10.6 
ce: 11.5 ± 5.1 

t(s-co) = 
-2.8 

 
t(s-ce) = 

-0.49 

t(s-co) =  
-1.895 

 
t(s-ce) =  
-1.895 

Ho rejected 
Ho retained 

Lower mean 
K/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 0.67 ± 0.12 
co: 4.58 ± 2.11 
ce: 1.78 ± 1.63 

t(s-co) = 
-3.6 

 
t(s-ce) = 

2.0 

t(s-co) = 
 -1.895 

 
t(s-ce) = 
 -1.895 

Ho rejected 
Ho rejected 

Lower mean 
Mg/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 10.4 ± 5.3 
co: 21.3 ± 9.8 
ce: 11.2 ±  3.5 

t(s-co) =  
-2.8 

 
t(s-ce) = 

0.48 

t(s-co) =  
-1.895  

 
t(s-ce) =  
-1.895 

Ho rejected 
Ho retained 

Lower mean 
Mn/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 4.4 ± 1.5 
co: 11.7 ± 3.2 

ce: 11.20 ± 4.57 

t(s-co) = 
-0.33 

 
t(s-ce) = 

4.8 

t(s-co) =  
-1.895 

 
t(s-ce) =  
-1.895 

Ho retained 
Ho rejected 

Higher mean 
Na/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 2.4 ± 0.6 
co: 4.24 ± 1.52 
ce: 5.47 ± 4.35 

t(s-co) = 
4.4 

 
t(s-ce) = 

2.1 

t(s-co) = 
1.895 

 
t(s-ce) = 

1.895 

Ho rejected 
Ho rejected 

Higher mean 
Sr/Ca in shell? 

paired t-tests 
(dependent 
samples) 

8s, 
8co, 
8ce 

s: 0.4 ±   0.1 
co: 0.65 ± 0.22 
ce: 2.08 ± 3.32 

t(s-co) = 
3.3 

 
t(s-ce) = 

1.4 

t(s-co) = 
1.895 

 
t(s-ce) = 

1.895 

Ho rejected 
Ho retained 

At the Kremmling site, significant differences were found between concretions and shell, 
or cement and shell, for most minor elements.  The only statistically significant 
difference in stable isotopes was heavier δ13C  in shell versus cement.  The null 

hypothesis, that there is no significant difference between shell and concretion, and 
between shell and cement, was retained for all other isotopic comparisons and some 

minor element comparisons.  All isotope ratios reported in ‰ vs.PDB; all minor element 
ratios reported in mMol/Mol.
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TABLE 14—Statistical Tests for Game Ranch Concretions and Shell 
 

Alternate 
Hypothesis 

Type  
of Test 

N Means,  
± standard  
deviations 

Calculated 
Value(s) 

Critical 
Value (0.05 
significance) 

Result 

Heavier mean 
δ13C in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: -1.91 ± 1.67 
co: -10.85 ± 4.93 

t(s-co) =  
-2.51 

t(s-co) =  
-2.132 

Ho 
rejected 

Heavier mean 
δ18O in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: -2.68 ± 0.82 
co: -1.56 ± 0.25 

t(s-co) = 
1.54 

t(s-co) =  
-2.132 

Ho 
retained 

Lower mean 
Al/Ca in shell? 

paired t-tests 
(dependent 
samples) 

2s, 
2co 

s: 5.4 ± 7.0 
co: 21.9 ± 21.4 

t(s-co) = 
 -1.8 

t(s-co) =  
-6.314 

Ho 
retained 

Lower mean 
Fe/Ca in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 8.1 ± 13.3 
co: 80. ± 72 

t(s-co) =  
-2.0 

t(s-co) =  
-2.132 

Ho 
retained 

Lower mean 
K/Ca in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 2.21 ± 2.31 
co: 12.3 ± 10.5 

t(s-co) =  
-1.80 

t(s-co) =  
-2.132 

Ho 
retained 

Lower mean 
Mg/Ca in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 18.6 ± 34.9 
co: 51.9 ± 16.9 

t(s-co) =  
-2.13 

t(s-co) =  
-2.132 

Ho 
retained 

Lower mean 
Mn/Ca in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 3.5 ± 5.2 
co: 22.0 ± 14.3 

t(s-co) =  
-1.5 

t(s-co) =  
-2.132 

Ho 
retained 

Higher 
mean Na/Ca in 

shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 17.4 ± 4.4 
co: 18.7 ± 12.2 

t(s-co) =  
-0.39 

t(s-co) = 
2.132 

Ho 
retained 

Higher mean 
Sr/Ca in shell? 

paired t-tests 
(dependent 
samples) 

5s, 
5co 

s: 2.71 ± 0.69 
co: 2.09 ± 0.63 

t(s-co) =  
-0.89 

t(s-co) = 
2.132 

Ho 
retained 

 
Among the Game Ranch samples, no significant differences were found between 

concretions and shell for minor elements.  Several minor elements, however, approached 
statistical significance: Al/Ca, Fe/Ca, K/Ca, Mg/Ca, and Mn/Ca, all of which were higher 

in concretions.  Heavier δ13C occurred in shell versus concretions.  The remainder of 
comparisons did not allow for the statistical rejection of the null hypothesis, no difference 

between isotopic values and minor element concentrations between shell material and 
concretions.  All isotope ratios reported in ‰ versus PDB and all minor element ratios 

reported in mMol/Mol calcium.
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TABLE 15—Statistical Tests for Trask Ranch Cements, Concretions, and Shell 
 
Alternate 

Hypothesis 
Type  

of Test 
N Means,  

± std. deviations 
Calculated 

Value(s) 
Critical Value 
(0.05 signif.) 

Result 

Heavier 
mean δ13C 
in shell? 

paired t-
tests (dep. 
samples) 

14s, 
14co, 
5ce1, 
8ce2 

s: -7.96 ± 3.15 
co: -19.85 ± 4.11 
ce1: -12.12 ± 3.96 
ce2: -13.28 ± 3.63 

t(s-co) = 2.72 
t(s-ce1) = 2.18 
t(s-ce2) =1.25 

t(s-co) = 1.771 
t(s-ce1) = 2.132 
t(s-ce2) = 1.895 

Ho rejected 
Ho rejected 
Ho retained 

Heavier 
mean δ18O 
in shell? 

paired t-
tests (dep. 
samples) 

14s, 
14co, 
5ce1, 
8ce2 

s: -3.21 ± 1.04 
co: -2.59 ± 1.53 
ce1: -5.29 ± 3.88 
ce2: -4.63 ± 3.48 

t(s-co) = -1.85 
t(s-ce1) = 1.41 
t(s-ce2) = 0.33 

t(s-co) = 1.771 
t(s-ce1) = 2.132 
t(s-ce2) = 1.895 

Ho rejected 
Ho retained 
Ho retained 

Lower 
mean Al/Ca 

in shell? 

paired t-
tests (dep. 
samples) 

14s, 
14co, 
5ce1, 
9ce2 

s: 4.0 ± 3.3 
co: 15.4 ± 8.4 
ce1: 5.6 ± 8.4 
ce2: 2.2 ± 2.7 

t(s-co) = -3.7 
t(s-ce1) = 0.49 
t(s-ce2) = 1.1 

t(s-co) = -1.771 
t(s-ce1) = -2.132 
t(s-ce2) = -1.860 

Ho rejected 
Ho retained 
Ho retained 

Lower 
mean Fe/Ca 

in shell? 

paired t-
tests (dep. 
samples) 

15s, 
15co, 
5ce1, 
9ce2) 

s: 4.4 ± 3.5 
co: 13.7 ± 3.1 
ce1: 7.3 ± 4.9 
ce2: 8.0 ± 4.1 

t(s-co) = -4.2 
t(s-ce1) = -0.48 
t(s-ce2) = -1.9 

t(s-co) = -1.761 
t(s-ce1) = -2.132 
t(s-ce2) = -1.860 

Ho rejected 
Ho retained 
Ho rejected 

Lower 
mean K/Ca 

in shell? 

paired t-
tests (dep. 
samples) 

15s, 
15co, 
5ce1, 
9ce2 

s: 1.78 ± 1.00 
co: 4.98 ± 1.58 
ce1: 1.60 ± 1.87 
ce2: 1.55 ± 0.81 

t(s-co) = -4.0 
t(s-ce1) = 0.50 
t(s-ce2) = 0.33 

t(s-co) = -1.761 
t(s-ce1) = -2.132 
t(s-ce2) = -1.860 

Ho rejected 
Ho retained 
Ho retained 

Lower 
mean 

Mg/Ca in 
shell? 

paired t-
tests (dep. 
samples) 

15s, 
15co, 
5ce1, 
9ce2 

s: 23.0 ± 12.8 
co: 79 ± 24 

ce1: 29.6 ± 35.0 
ce2: 32.0 ± 23.7 

t(s-co) =-4.73 
t(s-ce1) = 0.05 
t(s-ce2) = -1.72 

t(s-co) = -1.761 
t(s-ce1) = -2.132 
t(s-ce2) = -1.860 

Ho rejected 
Ho  retained 
Ho retained 

Lower 
mean 

Mn/Ca in 
shell? 

paired t-
tests (dep. 
samples) 

15s, 
15co, 
5ce1, 
9ce2 

s: 3.53 ± 2.56 
co: 11.2 ± 7.2 
ce1: 10.0 ± 6.7 
ce2: 6.9 ± 4.1 

t(s-co) = -3.1 
t(s-ce1) = -1.9 
t(s-ce2) = -4.4 

t(s-co) = -1.761 
t(s-ce1) = -2.132 
t(s-ce2) = -1.860 

Ho rejected 
Ho retained 
Ho rejected 

Higher 
mean 

Na/Ca in 
shell? 

paired t-
tests (dep. 
samples) 

15s, 
15co, 
5ce1, 
9ce2 

s: 18.7 ± 10.0 
co: 9.4 ± 3.9 

ce1: 5.99 ± 3.03 
ce2: 11.25 ± 13.81 

t(s-co) = 3.5 
t(s-ce1) = 2.55 
t(s-ce2) = 2.22 

t(s-co) = 1.761 
t(s-ce1) = 2.132 
t(s-ce2) = 1.860 

Ho rejected 
Ho rejected 
Ho rejected 

Higher 
mean Sr/Ca 

in shell? 

paired t-
tests (dep. 
samples) 

14s, 
14co, 
 5ce1, 
9ce2 

s: 3.27 ± 0.97 
co: 0.89 ± 0.09 
ce1: 0.50 ± 0.35 
ce2: 0.59 ± 0.39 

t(s-co) = -0.60 
t(s-ce1) = 20. 
t(s-ce2) = 7.5 

t(s-co) = 1.771 
t(s-ce1) = 2.132 
t(s-ce2) = 1.860 

Ho retained 
Ho rejected 
Ho rejected 

 

 
Statistically significant differences for the Trask Ranch site include Sr/Ca for the shell 
versus cements, δ13C and δ18O for the shell versus concretions, and Na/Ca for both.  Most 
other comparisons resulted in the retention of the null hypothesis, no significant 
difference in the mean isotopic value or minor element concentration between shell and 
concretion or shell and cement.  All isotope ratios reported in ‰ versus PDB and all 
minor element ratios reported in mMol/Mol calcium. 
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2.4 Discussion 

2.4.1 Review of Sample Suites: In the “Mode of Preservation” suite, enrichment 

outliers in aluminum, iron, manganese, and strontium were present in the shell material 

found within the concretions.  Furthermore, the concretions had statistically significant 

higher mean Fe/Ca and Mg/Ca, with a strong (but not statistically significant) 

relationship between mode of preservation and Mn/Ca ratio.  Enrichment in Fe/Ca and 

Mn/Ca is a diagenetic signature indicative of interaction with meteoric waters (Veizer 

and Fritz, 1976) or cementation associated with methane seeps (Krause et al., 2003).  

Therefore, the ammonite specimens preserved in shale are less altered.  Buchardt (1977) 

explains the superior preservation in shale as due to retention of the organic matrix in the 

low-permeability, chemically reducing environment.  Another idea is that the formation 

of the concretion, itself a chemical phenomenon, sometimes significantly alters the shell 

that it precipitates around, partially dissolving the shell and reprecipitating the calcium 

carbonate as calcite within the shell microstructure.  The precipitated calcite would have 

a minor element and isotopic signature between that of pure shell and that of the 

diagenetic fluid.  Thus, taking samples only from the interior of concretions may 

minimize the effect of chemical weathering when concretions are exposed at the surface, 

but can do nothing to address early diagenetic alteration.  Veizer and Fritz (1976) offer a 

manganese-based alteration equation to estimate the “degree of alteration” from 

diagenesis: 

            Degree of alteration (%) = (Mnshell – Mnequilibrium) x 100 (4) 
 Mnenclosing rock carbonate – Mnequilibrium  
 
Using this equation, the average degree of alteration for the samples taken from shell 
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preserved in concretions was 33.3% ± 37.4%, whereas the average degree of alteration 

for shell preserved in shale was 5.6% ± 9.1%.  These figures should be regarded as 

general estimates because the “Mode of Preservation” suite did not contain samples of 

the concretions themselves, so an average Mn/Ca values for each locality, calculated 

from the “Cementation” suite data, was used.  The effect of such alteration on isotopic 

signals is statistically significant for δ18O, and nearly so for δ13C.  Therefore, shale 

should be the preferred source for shell material used in δ18O paleotemperature and δ13C 

productivity/diet calculations.  A third idea, supported by further data in the 

“Cementation” suite, is that cements found in the concretions are formed by the same 

diagenetic fluids that cause shell alteration.  There was no statistically significant 

difference in the mean concentrations of Na/Ca (~16 mMol/Mol), K/Ca (~0.8 

mMol/Mol) or Sr/Ca (~3mMol/Mol) with respect to mode of preservation.  The 

independence of concentrations of these elements from lithology suggests that shell from 

both concretions and shale could be used in paleosalinity calculations.   

In the “Shell Sampling Location” suite, ammonite septa and adjacent 

phragmacone were found to commonly display very different isotopic signatures.  The 

δ18O values of the septum-phragmacone pairs were significantly different at the 0.05 

significance level, whereas the δ13C values were not.  With a sample size of only ten pairs 

available, clearly, a larger sample size is needed to resolve this issue.  Mann (1992) found 

greater concentrations of Mg/Ca and Sr/Ca in Nautilus septa than in phragmacone.  If 

true for the ammonite samples, this could indicate the influence of mineral-rich 

extrapallial fluid in shell precipitation.  Alternately, higher Mg/Ca but lower Sr/Ca in the 

septa could indicate diagenetic alteration.  The septa of ammonites are frequently 
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cemented to a greater degree than the phragmacone, and these cements, as Figures 12 and 

14 illustrate, are lighter in δ18O than the shell they precipitate upon.  Differences in the 

minor element compostion of septa versus phragmacone shell, however, are minimal, so 

neither extrapallial fluid nor cementation is likely the cause of the isotopic disparity in 

this dataset.  Paleosalinity calculations could therefore be performed on septa or 

phragmacone samples.  Nearly all septa – in Placenticeras, Hoploscaphites, and 

Baculites – have isotopically lighter δ18O than the phragmacone samples.  The depression 

of δ18O along the septum is consistent with the highly negative δ18O signature of Nautilus 

metabolic CO2, which contributes 0-10% of shell carbonate in Recent mollusks (Auclair 

et al., 2004).  However, in a study of aquarium-raised Nautilus, Landman et al. (1994) 

demonstrated that temperatures coincident with the temperature range of the aquarium 

could be derived from the shell δ18O signature.  Another suggestion is the time averaging 

inherent in the formation of a septum.  A septum in wild, immature Nautilus may take 

from 23 to 75 days to precipitate (Cochran et al., 1981), while 0.2 mm of shell takes 17 to 

30 days (Saunders, 1983).  The onset of septal formation, coincident with the 

phragmacone samples in this study, could be at times of relatively lower temperature than 

the average temperature during the spans of time over which the septa were precipitated.  

Isotopically light δ13C could also be a sign of metabolism, as ontogenetically young, 

small mollusks with a high metabolic rate accumulate more of the lighter isotope derived 

from food (Mitchell et al., 1994).   Because δ13C does not vary between septa and 

phragmcone, however, it may be possible to extract reasonable productivity/food source 

data from septa. 

In the “Shell Color” suite, the assertations of researchers (e.g., Forester et al., 
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1977; Tsujita and Westermann, 1998) who advocate a preference for opalescent shell 

were supported slightly.  Opalescent shell did tend to possess a lower Mg/Ca ratio, with 

magnesium being an indicator of the presence of secondary calcitic cement, while non-

opalescent shell often was depleted in strontium.  Strontium depletion will lead to 

erroneous paleosalinity values, so should be avoided in studies that include paleosalinity 

using the equation of Brand (1986).  Opalescent shell also had isotopically heavier δ18O, 

which might be less altered because both diagenetic cement and meteoric water have 

lighter δ18O than shell material.  However, neither of these findings is statistically 

significant, despite n = 55 (all locations) and n = 38 (South Dakota locations only).  Only 

when Colorado data was removed did the differences in K/Ca and Mn/Ca ratios relate to 

color class.  The only element to vary significantly with color, regardless of collection 

site, was magnesium (see Figure 9), which tends to be found at higher relative 

concentrations in yellow, orange, and brown shell material.  In particular, the relationship 

between color class and δ13C was weak, suggesting that any color of shell could be used 

in productivity/food source studies. 

In the “Cementation” suite, a comparison of cemented and uncemented shell 

material revealed a significant difference in only δ13C.  Cemented shell, therefore, may be 

used in paleosalinity and paleotemperature reconstructions, but not productivity/food 

source ones.  At the Trask Ranch site, the isotopic signature of the cements which form a 

linear trend with the altered shell is consistant with second-order cements, having formed 

by waters of meteroric origin late after deposition (Wright, 1987).  These findings 

conflict directly with the shell alteration model of Veizer and Fritz (1976), which uses the 

carbonate fraction of the rock (i.e., the concretion) as the composition of the diagenetic 
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fluid which determined manganese and/or iron enrichment.  Therefore, for this locality, 

the shell alteration equation of Veizer and Fritz (1976) should be modified: 

            Degree of alteration (%) = (Mnshell – Mnequilibrium) x 100 (5) 
 Mnsecond order_cement– Mnequilibrium  

 
Application of this modified equation, with Mnequilibrium = 15 ppm for seawater, to Trask 

Ranch shell data which have associated secondary cement and concretion values, yields a 

higher average percent altered (57%) for the cement calculation than for the concretion 

calculation (43%).  Because this figure is an estimation of the percent secondary calcite 

present in a shell sample, it can be correlated with the actual percentage of calcite, as 

determined by X-ray diffraction, as part of a future study.  The isotopic signature of the 

other cements at the Trask Ranch is consistent with first-order cements, formed by 

marine waters during early diagenesis (Brand, 1994).  The first-order cements, which 

have the same δ18O and δ13C signatures as the concretions and a marine isotopic 

signature, do not appear to have altered shell associated with them.  The matrix within 

the Trask Ranch concretions has slightly negative δ18O values and very negative δ13C 

values (-14 to -25‰), similar to those documented for ammonite-bearing concretions 

from the Late Cretaceous of eastern Siberia (Teys et al., 1978).  The values are also 

similar to those of cements precipitated under conditions of methane oxidation and 

sulfate reduction for the Gulf of Mexico during the Pleistocene (Howard et al., 2005), 

and are similarly high in magnesium and iron. The concretions and cements of the Game 

Ranch locality are even higher in iron and magnesium, enough to classify them as very-

high-magnesium or iron-calcites (Howard et al., 2005).  Again, this is characteristic of 

depositional environments where methane is being oxidized and sulfate reduced.  More 
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shell material with cementation is also needed, as cementation was an uncommon 

phenomenon (n = 2 for n = 40 shell samples) in Game Ranch specimens.  Exterior 

crystallization upon the shells had the same minor element and oxygen isotope signature 

as shell, and thus likely represented recrystallization of the shell rather than a secondary 

calcite precipitated from a late diagenetic fluid.  Concretions had isotopic signatures of -

6‰ to -11‰ and -1‰ to -2‰ for δ18O and δ13C, respectively.   The δ18O values, heavier 

than those for Trask Ranch, were equivalent to those reported for a Turonian Western 

Interior Seaway dataset (Pagani and Arthur, 1998).   

 Conceivably, the South Dakota concretions were formed from sediment and shell 

at the bottom of the Western Interior Seaway, perhaps initiated by the interface between 

an isotopically unusual bottom water and the slightly brackish but isotopically normal 

seawater above.  Because of low oxygen, the presence of methane and sulfur, and rapid 

sedimentation vertebrate and crustacean predators did not disturb the organisms’ remains. 

 Instead, an anaerobic bacterial community, drawn to the organic matter accumulation, 

thrived.  These bacteria produced methane and sulfur compounds.  The isotopic 

signatures of the cements are clearly marine, so the effect from bacterial metabolism on 

the δ18O value of the cement and concretions is likely negligible.  The low carbon values 

of the concretions and infaunal organisms (Drepanocheilus and Anisomyon) are 

consistent with the accumulation of methane in the sediment pore spaces. A study of the 

sulfur present in shell, concretion, and cement, which is not possible with the ICP-OES 

system but could be performed by electron microprobe, could help establish the dynamics 

of such an ecosystem, as would observation of Recent anaerobic communities.  There 

was, at least occasionaly, a large amount of sulfur in the Western Interior Seaway 
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because of large pyrite crystals and pyrite-replaced ammonites found in the Pierre Shale 

in Colorado.  Regardless of the proportion of each bacterial type on the seafloor of the 

Western Interior Seaway, the products from the oxidation of methane and the reduction 

of sulfate are acidic, and could begin dissolving shell and reprecipitating it as cement to 

form the start of a concretion.  Once the concretion begins growing, it could incorporate 

calcite from surrounding pore water, producing the characteristic isotopic values.  

However, this microbially favorable environment came to an end with the Western 

Interior Seaway, the shale containing concretions was exposed to meteoric water, and 

diagenetic fluids derived from it penetrated the concretions along planes of weakness, 

such as dewatering cracks and the fossils themselves.  Under this hypothesis, the 

“septarian” calcites which cross through the concretions should return signatures as 

Cement-2, influenced by meteoric water. 

 Lastly, at Kremmling, Colorado, the concretions had a δ18O signature similar to 

the Game Ranch concretion specimens, along with an isotopically light δ13C signature (-

5‰ to -15‰) on the order of that in meteoric water.  Because the isotopic signature of 

the Kremmling, Colorado, cements is identical to that of the concretions, the cement is 

likely first-order and thus precipitated from the same fluids that cemented the 

concretions.  Shell material was similar to both concretions and cements in terms of 

isotopic composition, and appears to follow a J-shaped curve characteristic of alteration 

by meteoric water.  Because Kremmling, Colorado, was a nearshore environment, 

continued regression during or slightly after the Baculites compressus/cuneatus biozones 

could have exposed the seafloor, even before the concretions fully lithified.  This would 

explain the consistent, thorough alteration of the shell, especially the depletion in Sr/Ca 
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and Na/Ca, which are present in much smaller concentrations in freshwater than in 

saltwater.  The shell nonetheless differed from concretions and cement in its minor 

element composition, with significantly lower Fe/Ca, K/Ca, and Mg/Ca ratios than 

cement, higher Na/Ca and Sr/Ca ratios than cement, and lower K/Ca and Mn/Ca, and 

higher Na/Ca ratios than concretions.   In summary, the variety of isotopic 

signatures of concretions and cements across the Baculites compressus/cuneatus 

biozones suggest localized diagenetic environments.  In terms of minor elements, second-

order cementation appears to have the strongest influence on shell light stable isotope 

chemistry, whereas concretion formation and first-order cements also influence the minor 

element concentration but appear to have less of an effect on isotopic signature of the 

shell material. 
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2.4.2 Utility of a Minor Element Alteration Indicator: 
 
 With data from all four suites, an evaluation of the utility of a minor-element 

alteration indicator may be established.  Appropriate minor elements to select should be 

those that, above or below a certain limit, correlate with unusually light isotopic values.  

The only minor element ratio that does so for both δ18O and δ13C is Mg/Ca. The Mg/Ca 

dataset has the added advantage of being more complete than the Fe/Ca and Mn/Ca 

datasets.  For the δ18O data, the Sr/Ca ratio also produces a fairly clear fit, among the 

minor elements that appear be linked to unusually light isotopes (Figure 15).  Therefore, 

a Sr/Ca-Mg/Ca filter is proposed.  The use of Sr/Ca was also proposed by Elorza and 

García-Garmilla (1996) in their study of aragonitic and calcite layers of Inoceramus 

specimens from Spain.  For the Western Interior Seaway, the data of Pagani and Arthur 

(1998) support the use of magnesium as an indicator of alteration.  Their figures 

comparing minor element ratios with visually assessed shell preservation compared to 

Recent Nautilus, show Mg/Ca as the best discriminator between well-preserved and 

poorly-preserved shell.  In contrast, the fields for Fe/Ca and Mn/Ca content show 

significant proportions of the better-preserved shell outside the limits defined by Nautilus 

(Pagani and Arthur, 1998). Limits for these could be more conservatively based on the 

full spectrum of Recent aragonitic shell—including habitats worldwide and 

representatives of Bivalvia, Gastropoda, and Cephalopoda—as given in Buchardt and 

Weiner (1981), instead of only Nautilus, which lives, at least for part of its life, in a deep-

water habitat that was nonexistent in the Western Interior Seaway.  It is unlikely that 

Western Interior Seaway mollusks secreted shell with higher minor element 

concentrations than mollusks today.  In life, mollusks discriminate against both Mg and 
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Sr in proportion with the concentration of these elements in seawater (Dodd, 1967).  The 

chemistry of first-order marine cements in this study is unusual for the Late Cretaceous, 

which, based on oolitic limestones and first-order marine cements worldwide, generally 

had a high overall concentration of Ca in the water and low Mg/Ca ratios (Stanley and 

Hardie, 1998).  Using halites, Trimofeff et al. (2006) demonstate that the Mg/Ca ratios in 

seawater were low in the Late Cretaceous compared to the present, though the authors 

calculate that the Early Cretaceous concentrations were even lower. Also, the 

geochemistry of waters formed under different oxygenation conditions would have 

influenced shell geochemistry.  The Western Interior Seaway, at least in proximity to the 

sediment-water interface, was often dysoxic, as evidenced by the predominance of black 

shales.   Therefore, the minor element concentrations of the concretions and cements may 

reflect unique geochemical conditions within the sediments at the bottom of the Western 

Interior Seaway.  Because of this, an empirical filter based on observations of anomalous 

δ18O signatures, derived from Figure 15, is used.  These values appear for Mg/Ca > 6.5 

mMol/Mol, above the 2.5 mMol/Mol limit for Recent aragonitic molluscan shell material 

and Sr/Ca <  1.8 mMol/Mol, equivalent to the lower limit for Recent aragonitic 

molluscan shell (Buchardt and Weiner, 1981).   Because higher Mg/Ca ratios than Recent 

shells are unlikely for the Late Cretaceous, the Mg/Ca acceptability level most likely 

represents a threshold above which the shell has interacted with mineral-rich diagenetic 

fluids enough to be isotopically altered and a most-conservative range for the possible 

minor-element ratios for Cretaceous shell material. 
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After applying the modified minor element filter described above to all data, 

when comparing the unfiltered isotopic data (Figure 16) with the filtered isotopic data 

(Figure 18A), several observations can be made.  The first is that the filter eliminates the 

vast majority of data points, including the entire suite of Kremmling, samples.  Data 

points for both δ18O and δ13C isotopically lighter than -6‰ are rejected by the filter, 

although the filter was created looking at values in the -10 to -15‰ range.  Fields emerge 

for Baculites, Inoceramus, and Placenticeras, with a Hoploscaphites point and four 

Nymphalucina points represented as well (two of these are outliers not included in the 

graph).  All of the gastropods specimens from the genera Anisomyon and 

Drepanocheilus, as well as the bivalve Anomia, were excluded based on their minor-

element ratios.  However, further research is needed to determine if this loss is an effect 

of sample size (i.e., with a larger dataset of these fossils, less-altered specimens would be 

present) or whether the taxa do tend to contain higher concentrations of Mg/Ca and lower 

concentrations of Sr/Ca.  If the latter is true, the accuracy of isotopic signals from these 

genera needs to be determined. 

 Figure 18B replicates the filtered isotopic data, with 90% confidence intervals 

surrounding the mean (δ18O, δ13C) data point for each data subset.  At the Game Ranch, 

the overlap of fields for Placenticeras and Baculites suggests that their habitats in life 

overlapped.  Because of its shell morphology, Placenticeras had the most shallow 

implosion depth of any Western Interior Seaway ammonite, calculated by Tsujita and 

Westermann (1998) to be ~40 m.  However, the total depth of the Western Interior 

Seaway during the Baculites compressus/cuneatus biozones (Harries, pers. comm., 

2004), was likely shallower.  Based on facies distribution patterns, Batt (1989) proposes 
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that Baculites were planktic but living at a slightly greater average depth than 

Placenticeras.  The position of Jeletskytes near the Placenticeras data points suggests a 

habitat in the upper water column, consistent the analysis of its mobility by Westerman 

(1996).  The values for Inoceramus at the Game Ranch site are distinct, suggesting a 

different habitat from the ammonites.  This benthic habitat must have had a different δ18O 

signature, perhaps influenced by freshwater or by the unique chemical conditions at the 

bottom of a dysoxic sea. The separation of benthic epifaunal Inoceramus from the nektic 

ammonites is consistent with all other studies for the Western Interior Seaway reviewed 

in this paper.   The overlap in ranges for the Trask Ranch site could indicate a less 

stratified water column at the time and location the organisms lived.  Neither the relative 

nor the absolute timing, and neither the relative nor absolute depth, of the Trask Ranch 

and Game Ranch localities within the Baculites compressus biozone is known, and 

instability (with periodic seafloor dysoxia, which could also explain the abundant black 

shales) is likely in the Western Interior Seaway.  Along with the salinity levels below 

normal-marine, the dysoxia explains the scarcity of echinoderms, corals, and rudist 

bivalves in the Western Interior Seaway deposits.  Therefore, it is not unreasonable to 

conclude that the isotopic composition of the water could have varied on a short time 

scale.  On the other hand, the overlap could be due to insufficient data or misapplication 

of minor-element filters.  An important observation that should be made when comparing 

the δ18O and δ13C ranges for each genus (Figures 18 and 19, respectively) with statistical 

data taken for each genus at each location (Tables 16 and 17, respectively), is that the 

minor element filter is effective at identifying localities that possess shell alteration.  In 

selecting unaltered samples within each locality, the minor element filter discards many 
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samples that, nevertheless, yield reasonable δ18O and δ13C values.  Of course, a value 

may be within the range of “reasonable” values yet still not reliably record of the original 

paleoceanographic signals. The difference in mean isotopic composition between filtered 

and unfiltered data is not significant for any of the genus-location subsets at the 0.05 

significance level, though the increase in δ18O ratio of the Trask Ranch baculitids after 

the application of the filter points to a strong relationship, with t = -1.44 versus critical t 

= -1.69.  The standard deviations for the data subsets do not decrease with the application 

of the filter.  This suggests that despite the possibility of alteration as indicated by minor-

element proxies, many specimens with Mg/Ca > 6 mMol/Mol or, to a lesser extent, Sr/Ca 

< 1.8 mMol/Mol, carry isotopic signatures no different than the “more pristine” shell and 

that the isotopic signatures contained within shell material may be more robust than 

generally assumed.  Why some fossil shell with increased Mg/Ca ratios and decreased 

Sr/Ca ratios relative to Recent aragonitic shell is isotopically identical to shell unaltered 

with respect to these chemicals is a topic that should be explored further.  X-ray 

diffraction could deduce the percentage of calcite in the specimens, and any other 

minerals contributing to the minor element composition of the shell.  Then, scanning 

electron microscopy of the specimens could reveal if the minerals are replacing aragonite 

or adhering to it, and if it is the latter, removal of the minerals could restore normal 

isotopic composition for samples (Cochran et al., 2005). 
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The values obtained in this study for agree well with prior research in the Western 

Interior Seaway, though the ranges are greater (Table 19).  This study does document a 

larger δ13C range than He et al. (2004) do for Inoceramus, extending the bivalve’s δ13C 

signature towards heavier values, though the average remains an isotopically heavy 3.06 

± 1.94‰.  The Hoploscaphites value is heavier in δ13C and lighter in δ18O than their 

scaphite, though conclusions should not be overextended from a single data point.  

Differences may be due to taxonomic effect, as the other studies used other genera of 

scaphites, or to actual environmental variability.    Lastly, the Placenticeras samples in 

this study, while isotopically light compared to contemporaneous ammonites, did not 

show the extremely light (-3.4‰ to -7.0‰) values documented by Tsujita and 

Westermann (1998), because their specimens were likely diagenetically altered.   

2.4.3 Salinity and temperature calculations: Several authors (e.g., Rucker and 

Valentine, 1961; Dodd and Crisp, 1982; Rosenberg and Hughes, 1991) support a positive 

correlation between salinity and the concentration of sodium within molluscan shell.  

Brand (1986) found a positive relationship for a large dataset of bivalve and gastropods, 

both fossil and Recent, the empirically derived equation for which is: 

S = -5.769ln(A) + 28.380        (2) 

Salinity S is given in parts per thousand ± 0.5, and A is the ratio of ppm Sr / ppm Na, or 

the geometric mean of such ratios.  Salinity has little to no correlation with Sr/Ca in 

molluscan shell (Purton et al., 1999), so Na is the measure of salinity, as advocated by 

Dodd (1967), and Sr/Ca corrects for taxonomic effects in minor element discrimination. 

Turekian and Armstrong (1960) show that the concentration of strontium in molluscan 

shell varies primarily by genus.  This is likely because of intergeneric differences in 
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metabolic rate, which in turn determines the strontium concentrations of molluscs 

(Rosenberg and Hughes, 1991).  Strontium concentrations are significantly higher in 

Recent cephalopods than in Recent bivalves and gastropods (Dodd, 1967), so the salinity-

Sr/Na equation should not be applied directly to cephalopods, as it will overestimate the 

salinity.  Using strontium and salinity data from Brand (1983) and Mann (1992), an 

adjustment factor of -1.5‰ was derived for the salinity of Nautilus.  The adjustment is 

approximate because it was derived from the average Sr/Ca values and environmental 

salinity for individuals of Nautilus found in prior research.  This adjustment factor was 

then applied to the results of the equation on the ammonite specimens in the dataset.  The 

resulting salinities ranged from 27.7 ± 9.6‰ to 31.6 ±  0.6‰ for the filtered dataset 

(Table 18).  The lowest salinities were found in Placenticeras and Hoploscaphites and 

the highest were found in Inoceramus, consistent with a seaway with denser, more saline 

water at the bottom.   

To calculate the mean δ18O of the Western Interior Seaway seawater, the 

following equation, from Wright (1987), was used:  

S(WIS) = [1 – (δw(WIS)- δw(ocean)))/( δf - δw(ocean))] x S(ocean)    (3) 

Constants for δ18O  of the open ocean were δw(ocean) = -1.22‰ PDB and S(ocean) = 34.3, 

values calculated from models of Earth without polar ice caps (Schmidt, 1997). The mean 

δ18O (WIS) was calculated at ~-1.27‰, only slightly lighter than the oceanic value and 

comparable to the data of Schmidt (1997).  Slingerland et al. (1996) advocate using 

freshwater cements as an indicator of freshwater δ18O values, noting their general 

agreement with values from kaolinitic clay from the eastern shore of the Western Interior 

Seaway. A freshwater value of δ18O = -12.72‰, equivalent to the freshwater first-order 
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cements/concretions at Kremmling, was used in calculations because this meteoric-water-

derived freshwater was likely present shortly after the deposition of the fossils.  It should 

be noted, however, that using the value of -20 to -25‰ advocated by Dettman and 

Lohman, produces δ18O (WIS) values that are only 0.02‰ lower. 

Lastly, paleotemperature was calculated with Grossman and Ku’s (1986) equation 

for aragonitic shell: 

 T(oC) = 21.8 – 4.69(δc - δw).       (5) 

All Inoceramus specimens were from the inner nacreous aragonitic layer, rather then the 

outer prismatic calcitic layer, so the calcite paleotemperature equation of Epstein et al. 

(1953) was not needed.  For this equation, δc= the δ18O value of the shell and both this 

value and the δw value are expressed relative to PDB (1986).  Using Bettman and 

Lohman’s freshwater signature, paleotemperatures are higher by 0.1 oC. 

The resulting values for Baculites agree with values given by He et al. (2005), 

Tsujita and Westermann (1998), Schmidt (1997), and Fatherree et al. (1998).  The Game 

Ranch values are also equivalent to the Baculites values given by Zakharov et al. (2005) 

for Cretaceous material from the continental shelf of eastern Siberia, though these values 

are from an earlier time period, the Coniacian.  The temperature equivalence implies that 

the genus Baculites lived in habitats of similar temperature across its geographic and 

stratigraphic range. 



www.manaraa.com

 

83 

 

For Placenticeras, a paleotemperature of 28.1 ± 1.1 oC suggests that these 

ammonites lived in warm upper waters.  This value is at the low end of the range Tsuijita 

and Westermann calculated, but, as stated previously, their isotopically light δ18O values 

likely come from diagenetically altered material.  The high (36 oC) paleotemperature for 

Hoploscaphites is slightly higher than values found for the scaphite Jeletskytes by Tsujita 

and Westermann (1998) and for Scaphites by Whittaker, Kyser, and Caldwell (1986).   

However, the value is at the high end of their range and is approximately at the boundary 

for cessation of shell precipitation for Recent aragonitic mollusks (Elliot et al., 2003). 

More unaltered specimens must be examined to determine if the mean shell precipitation 

is, in fact, closer to the average of 25oC found by Tsujita and Westermann (1998).  The 

δ13C value for the Hoploscaphites (Figure 20) is within the range of other ammonites, 

suggesting that the organism lived in a similar habitat. 

The Baculites specimens examined in this study yielded a paleotemperature of 

20.9 ± 4.9 oC for Game Ranch and 24.7 ± 4.2 oC for Trask Ranch.  However, as depicted 

in Figure 20, the isotopic ranges for Baculites specimens were quite wide.  This could be 

a reflection of the temperature-induced natural variability in Baculites, water-mass 

migration, short-term climate fluctuations, or an imperfect filter.  It is possible that the 

differences in δ18O between Tourtelot and Rye’s (1969) Baculites data and Forester et 

al.’s (1977) Baculites data do not represent real temperature differences between the two 

locations, but are instead within the range of variability for Baculites from a single 

location.  The δ13C range for the Baculites specimens is comparable to both prior 

research and the δ13C range for Placenticeras. 
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While data for Placenticeras and Hoploscaphites are sparse, numerous studies 

provide comparative stable isotope and paleotemperature data for Inoceramus.  The range 

of values produced in this investigation, for both δ18O and δ13C, was comparable to prior 

research.  For each of these isotopes, the range produced by this study is greater than any 

of the other ranges, but this could be an artifact of the greater amount of data examined.  

Tsujita and Westermann (1998) and Wright (1987) also obtain anomalously high 

paleotemperature values for Inoceramus.  The authors invoke the presence of highly 

saline bottom water to explain the values.  An argument against this explanation, along 

with further discussion on the paleobiotic implications of these paleotemperatures, is 

presented in Chapter 3, Section 3.  
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FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter 
 
A. δ13C vs. Mg/Ca  

 
Above approximately 7 mMol/Mol, a greater number of unrealistic (10-20‰, versus 
PDB)  δ13C values emerge for the Kremmling dataset.  Isotopic outliers for Trask Ranch 
occur at the same level. 
 

FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 
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B. δ18O vs. Fe/Ca  

 
 
Above approximately 7 mMol/Mol Fe/Ca, very negative δ18O values emerge for the 
Kremmling dataset.  Isotopic outliers for Trask Ranch occur above 9 mMol/Mol. 
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FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 

 
C. δ18O vs. Mg/Ca  

 
Above approximately 6.5 mMol/Mol Mg/Ca, a greater number of unrealistic (10-20‰, 
versus PDB) δ18O values emerge for the Kremmling dataset.  Isotopic outliers for Trask 
Ranch occur above 12 mMol/Mol. 
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FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 

D. δ18O vs. Mn/Ca  

Above approximately 11 mMol/Mol Mn/Ca, very negative δ18O values emerge for the 
Kremmling dataset.  Isotopic outliers for Trask Ranch occur above 12 mMol/Mol. 
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FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 

E. δ18O vs. Na/Ca  

 
Below approximately 10 mMol/Mol Na/Ca, very negative δ18O values emerge for the 
Kremmling dataset.  Isotopic outliers for Trask Ranch occur below 9.5 mMol/Mol. 
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FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 

 
F. δ18O vs. Sr/Ca  

Below approximately 1.8  mMol/Mol Fe/Ca, very negative δ18O values emerge for the 
Kremmling dataset.  Isotopic outliers for Trask Ranch occur below 1.2 mMol/Mol. 
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FIGURE 16—Stable Isotope Cross Plot for All Shell Samples 

 
 
The unfiltered graph for the stable isotope data shows two clear clusters defined by their 
oxygen isotope ratios.  There is also a high degree of variability in samples of the same 
genus with regards to carbon isotopes. 
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FIGURE 17—Isotope Cross-Plot For All Shell Samples, Filtered by Mg/Ca and Sr/Ca 

 
The stable isotope cross-plot of filtered data shows better-defined fields for each genus.  
The positioning of the fields relative to each other is consistent with prior research. The 
ammonites Baculites (green) and Placenticeras (blue) show a greater variability in 
oxygen isotopes, whereas the bivalve Inoceramus (red) shows more variation in carbon 
isotopes. 
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 FIGURE 17—Isotope Cross-Plot For All Shell Samples, Filtered by Mg/Ca and Sr/Ca, 
With 90% Confidence 

Intervals

 
 
In this version of the isotope cross-plot for the filtered data, 90% confidence intervals are 

drawn from the mean data points.  The 90% confidence interval means that if 
other samples of Western Interior Seaway fossils were taken from the sampling 

locations, the probability is 90% that they would fall within the confidence 
interval with the true population mean. 
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FIGURE 18—Oxygen Isotope Range Chart 

 
 

Elimination of the data points with Mg/Ca and Sr/Ca outside of the limits of the minor 
element filter decreases the range of the δ18O values for each genus such that all 

points fall between 1‰ and -6‰.  However, it also eliminates less common 
genera such as Drepanocheilus and Anisomyon from the dataset.
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TABLE 16—Statistics Comparing δ18O of Pre-filter and Post-filter Datasets 
Alternate Hypothesis Type  

of Test 
N Means,  

± standard  
deviations 

Calcu-
lated 
Value 

Criti-
cal 

Value 
(0.05 

signif.) 

Result 

Lighter δ18O for Game 
Ranch Baculites after filter? 

one-tailed 
t-test (ind.) 

11u, 
7f 

u: -1.21 ± 0.84 
f: -1.07 ± 1.05 

t =  
-0.34 

 

t =  
-1.75 

Ho 
retained 

Lighter δ18O for Kremmling 
Baculites after filter? 

one-tailed 
t-test (ind.) 

12u, 
0f 

u: 11.56 ± 5.75 
N/A 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Baculites after filter? 

one-tailed 
t-test (ind.) 

32u, 
9f 

u: -2.44 ± 1.14 
f: -1.79 ± 0.90 

t =  
-1.44 

t =  
-1.69 

Ho 
retained 

Lighter δ18O for Game 
Ranch Hoploscaphites after 

filter? 

one-tailed 
t-test (ind.) 

1u, 
0f 

u: -4.51 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Kremmling 
Hoploscaphites after filter? 

one-tailed 
t-test (ind.) 

7u, 
0f 

u: -8.33 ± 3.37 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Hoploscaphites after 

filter? 

one-tailed 
t-test (ind.) 

13u, 
1f 

u: -3.79 ± 1.01 
f: -4.41 

N/A N/A N/A 

Lighter δ18O for Game 
Ranch Placenticeras after 

filter? 

one-tailed 
t-test (ind.) 

11u, 
8f 

u: -3.17 ± 0.90 
f: -3.05 ± 1.03 

t = 
-0.29 

t =  
-1.74 

Ho 
retained 

Lighter δ18O for Kremmling 
Placenticeras after filter? 

one-tailed 
t-test (ind.) 

10u, 
0f 

u: -15.23 ± 1.42 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Game 
Ranch Inoceramus after 

filter? 

one-tailed 
t-test (ind.) 

9u, 
7f 

u: -4.20 ± 0.67 
f: -4.27 ± 0.68 

t =  
0.48 

t =  
-1.76 

Ho 
retained 

Lighter δ18O for Kremmling 
Inoceramus after filter? 

one-tailed 
t-test (ind.) 

3u, 
0f 

u: -12.21 ± 2.96 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Inoceramus after 

filter? 

one-tailed 
t-test (ind.) 

6u, 
6f 

u: -3.36 ± 1.07 
f: -3.36 ± 1.07 

N/A  N/A N/A 

Lighter δ18O for Game 
Ranch Anomia after filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -2.99  ± 1.25 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Kremmling 
Anomia after filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -4.63 ± 1.01 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Game 
Ranch Nymphalucina after 

filter? 

one-tailed 
t-test (ind.) 

4u, 
4f 

u: 0.25 ± 0.19 
f: 0.25 ± 0.19 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Nymphalucina after 

filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -5.50 ± 5.05 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Drepanocheilus after 

filter? 

one-tailed 
t-test (ind.) 

3u, 
0f 

u: -4.62 ± 2.00 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Trask 
Ranch Anisomyon after 

filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -6.56 ± 0.03 
f: N/A 

N/A N/A N/A 
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FIGURE 19—Carbon Isotope Range Chart 

 
The minor element filter likewise eliminates light δ13C values from the dataset.  

Ammonites are then distributed between 2‰ and -5‰, and bivalves 6‰ to -1‰, except 
for an apparent outlier in Nymphalucina.
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TABLE 17—Statistics Comparing δ13C of Pre-filter and Post-filter Datasets 
 

Alternate Hypothesis Type  
of Test 

N Means,  
± standard  
deviations 

Calcu- 
lated 
Value 

Criti-
cal 

Value 
(0.05 

signif.) 

Result 

Lighter δ13C for Game 
Ramch Baculites after filter? 

one-tailed 
t-test (ind.)  

11u, 
7f 

u: -0.71 ± 0.94 
f: -0.51 ± 1.07 

t =  
-0.43 

t =  
-1.75 

Ho 
retained 

Lighter δ13C for Kremmling 
Baculites after filter? 

one-tailed 
t-test (ind.) 

12u, 
of 

u: -8.13 ± 1.50 
N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Baculites after filter? 

one-tailed 
t-test (ind.)  

32u, 
9f 

u: -5.41 ± 3.37 
f: -2.67 ± 1.30 

t =  
-0.78 

t = 
-1.69 

Ho 
retained 

Lighter δ13C for Game 
Ranch Hoploscaphites after 

filter? 

one-tailed 
t-test (ind.) 

1u, 
0f 

u: 0.544 
f: N/A 

N/A N/A N/A 

Lighter δ18O for Kremmling 
Hoploscaphites after filter? 

one-tailed 
t-test (ind.)  

7u, 
0f 

u: -13.59 ± 1.23  
f: N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Hoploscaphites after 

filter? 

one-tailed 
t-test (ind.) 

13u, 
1f 

u: -6.13 ± 2.97 
f: -1.10 

 

N/A N/A N/A 

Lighter δ13C for Game 
Ranch Placenticeras after 

filter? 

one-tailed 
t-test (ind.)  

11u, 
8f 

u: -2.81 ± 0.93 
f: -2.31 ± 0.93 

t = 
-0.83 

t =  
-1.74 

Ho 
retained 

Lighter δ13C for Kremmling 
Placenticeras after filter? 

one-tailed 
t-test (ind.) 

10u, 
0f 

u: -6.593 ± 1.564 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Game 
Ranch Inoceramus after 

filter? 

one-tailed 
t-test (ind.)  

9u, 
7f 

u: 4.52 ± 1.20 
f: 4.29 ± 1.27 

t =  
0.30 

t =  
-1.76 

Ho 
retained 

Lighter δ13C for Kremmling 
Inoceramus after filter? 

one-tailed 
t-test (ind.) 

3u, 
0f 

u: -5.16 ± 3.72 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Inoceramus after 

filter? 

one-tailed 
t-test (ind.)  

6u, 
6f 

u: 1.63 ± 1.60 
f: 1.63 ± 1.60 

N/A  N/A N/A 

Lighter δ13C for Game 
Ranch Anomia after filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -2.02 ± 1.56 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Kremmling 
Anomia after filter? 

one-tailed 
t-test (ind.)  

2u, 
0f 

u: 1.31 ± 0.76 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Game 
Ranch Nymphalucina after 

filter? 

one-tailed 
t-test (ind.) 

4u, 
4f 

u: -4.11 ± 9.42 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Nymphalucina after 

filter? 

one-tailed 
t-test (ind.)  

2u, 
0f 

u: -7.84 ± 7.30 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Drepanocheilus after 

filter? 

one-tailed 
t-test (ind.) 

3u, 
0f 

u: -11.33 ± 6.69 
f: N/A 

N/A N/A N/A 

Lighter δ13C for Trask 
Ranch Anisomyon after 

filter? 

one-tailed 
t-test (ind.) 

2u, 
0f 

u: -9.67 ± 1.54 
f: N/A 

N/A N/A N/A 
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TABLE 18—Paleoenvironmental Parameters Derived from Filtered Data 
 

 

Mean δ18O (shell), 
‰,± Standard 

Deviation 
Mean Salinity, ‰, 

± Standard 
Deviation 

Mean δ18O(WIS), 
‰, ± Standard 

Deviation 

Mean 
Paleotemperature, 

oC,± Standard 
Deviation 

Game Ranch 
Baculites -1.07 ± 1.04 30.6 ± 0.8 -1.26 ± 0.08 20.9 ± 4.9
Trask Ranch 
Baculites  -1.79 ± 0.91 29.9 ± 2.0 -1.26 ± 0.02 24.8 ± 4.2
Game Ranch 
Placenticeras -3.05 ± 1.03 28.1 ± 1.1 -1.28 ± 0.01 30.1 ± 4.9
Trask Ranch 
Hoplo-
scaphites 

-4.41 (n = 1) 27.3 (n = 1) -1.29 (n = 1) 36.5 (n = 1)

Game Ranch 
Inoceramus -4.27 ± 0.68 31.1 ± 1.9 -1.25 ± 0.02 36.1 ± 3.2
Trask Ranch 
Inoceramus -3.36 ± 1.07 27.7 ± 9.6 -1.28 ± 0.09 31.5 ± 4.9
Game Ranch 
Nympha-
lucina  

0.25 ± 0.19 31.7 ± 0.6 -1.25 ± 0.01 14.8 ± 1.2

 
The salinity, calculated using the strontium and sodium concentrations in the shell, was 
used to determine the mean δ18O for the Western Interior Seaway.  Taking δ18O of 
freshwater to be equal to the mean δ18O of Kremmling, Colorado concretions (because 
the western coastline was the likely source of more freshwater input to the seaway), the 
mean paleotemperature for each organism at each location was calculated.  The data 
support the notion of lower than normal salinity in the upper-intermediate waters of the 
seaway and verify the unrealistically high paleotemperatures for benthic epifaunal 
bivalves. 
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FIGURE 20—Stable Isotope Ranges for Genera in this Study and Prior Research 

Results of this study showed comparable light stable isotope signatures with data found 
by previous studies in the Western Interior Seaway. 
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CHAPTER 3. SCLEROCHRONOLOGY 

3.1 Previous Investigations of Molluscan Sclerochronology 
 

 3.1.1  Advantages of Molluscan Sclerochronology:  Sclerochronology is the study 

of changes in the chemical composition of a shell over an organism’s lifespan, taken 

along the growth axis.  Chemical composition in this context can be stable isotopic or 

minor element data.  Molluscs are ideal for sclerochronology be cause they grow 

accretionally, and most have well-defined growth bands that may be used to evaluate the 

relative age of different parts of the shell and orient the growth axis.  For most mollusks, 

growth is non-destructive; in order to precipitate additional shell, a mollusk does not 

need to dissolve previously precipitated shell material.  Therefore, all shell deposition 

from embryonic to gerontic stages is generally recorded in a single shell.  The record of a 

single shell contains chemical information with respect to time on the order of months, 

years, or decades, a resolution generally not available by comparing specimens from 

different stratigraphic horizons or even within a stratigraphic horizon, which is 

necessarily time-averaged due to depositional processes. Although mollusks strongly 

discriminate with respect to elements such as magnesium and strontium found in 

seawater, they precipitate oxygen and carbon at isotopic ratios close to equilibrium with 

seawater (e.g., Dodd, 1967; Landman et al., 1994; Elliot et al., 2003). 

 3.1.2 Cessation of Growth: One limitation in evaluating paleotemperature using 

molluscan shell is that mollusks do not grow throughout the year (Ivany et al., 2003), 

although this may have been less of a factor during more equable greenhouse conditions. 
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 Bivalves cease deposting shell when the temperature becomes too hot or too cold, or 

when the mollusk is spawning.  These cessations distort the temperature curve derived 

from δ18O.  Fatherree (1995) documented this effect for winter cessation of growth for 

the Western Interior Seaway bivalve Arctica ovata, so it is possible even in the more 

equable climate of the Cretaceous.   Whether this cessation is related to temperature or 

spawning is unknown, as the spawning cycle of the bivalve is unknown.  In their study of 

Recent Mercenaria mercenaria, Elliot et al. (2003) note that the bivalve, which spawns 

in March-June, grew more slowly in summer months than in winter, and grew more 

slowly overall in inlets with highly variable salinity.  Sepia showed slowed growth when 

it was in periods of starvation (Bettencourt and Guerra, 1999).   

  3.1.3 Metabolism: Another challenge of molluscan sclerochronology is the “vital 

effect,” or metabolic signature.  All mollusks display a kinetic effect with regards to 

minor elements, precipitating shell with less strontium and magnesium than seawater 

(Dodd, 1982).  However, the amount of discrimination differs based on shell mineralogy; 

calcitic bivalves discriminate less against magnesium and more against strontium as 

compared to aragonitic bivalves (Dodd, 1967).  Sodium discrimination also varies, with 

higher sodium concentrations found in cephalopods than in bivalves or gastropods 

(Dodd, 1967; Brand, 1983).  Mollusks, while not discriminating against heavy isotopes in 

the manner that plants and bacteria do, display a metabolic effect with regards to oxygen 

and carbon isotopes.  When a correlation between δ18O and δ13C is positive, it may be 

due to alteration or to metabolism.  At higher metabolic rates, mollusks incorporate more 

elements contained in their food supply, rather than from seawater, into their shells (e.g., 

Barrerra et al., 1990; Ivany et al., 2003).  Because all molluscan food sources are 
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isotopically lighter than seawater, the net effect is an isotopically lighter shell.  Barrerra 

et al. (1990) found positive correlations between stable isotopes in the bivalve 

Admussium colbecki along the metabolically active, fastest-growing parts of the shell.  

The positive correlations for the early ontogeny of Eutrephoceras (Landman et al., 1983), 

Baculites (Fatherree et al., 1998), and the bivalve Cucullaea (Dutton et al., 2002) may 

represent a rapid initial growth rate.  When studying another Recent bivalve, Mercenaria 

mercenaria, Elliot et al. (2003) found direct relationships between stable isotopes for 

specimens living in ideal habitats but inverse relationships between the variables where 

the environment was less conducive to growth and had a shorter summer growth period.   

  3.1.4 Analogs for Mollusks of Western Interior Seaway: Ammonites and 

inoceramids are extinct organisms with no close relatives, so the interpretation of their 

sclerochronology must rely on more distantly related analogs.  The most common analog 

used for ammonites is the shelled cephalopod Nautilus, of which there are four extant 

species (Mann, 1992).  The cuttlefish Sepia, which may be phylogenetically more closely 

related to ammonites than Nautilus, has also been examined.  Sepia δ13C values increase 

as individuals mature and migrate from inlets with high freshwater input (and highly 

negative δ13C of dissolved inorganic carbon) into the open ocean, though the change in 

δ13C ratio may also reflect changing diet.  Temperature values obtained by oxygen-

isotope paleothermometry fall between 14 oC and 22 oC and slightly overestimate the 

actual temperature of the inlets in which the Sepia lived, as well as the temperature of 

aquaria where Sepia were experimentally raised (Bettencourt and Guerra, 1999).  Though 

the authors explain this mismatch as evidence of a slight vital effect, it could also be the 

result of the temperature-based shell secretion rates they observed for the organism.  As 
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Ivany et al. (2003) established for the surf clam Spisula, if more shell is deposited in 

warmer temperatures, the oxygen-isotope paleothermometry values will be biased 

towards the warmer seasons (2003).  However, Nautilus belauensis individuals raised in 

an aquarium at 15-24 oC did not show any evidence of temperature-determined growth 

cessation, or any variation in the oxygen isotopic signature that could not be explained by 

equilibrium precipitation of aragonite (Landman et al., 1994).  This finding suggests that 

the shift in δ18O documented for wild Nautilus and potentially other shelled cephalopods 

after hatching is temperature-dependent rather than physiological.   

Certain bivalves, such as Anomia, may be compared directly with Recent 

counterparts, with the caveat that over 73 million years, taxonomic uniformitarianism 

may not hold for such factors as salinity tolerances and habitat preferences.  There are no 

close relatives to Inoceramus, so Wright (1987) applied paleotemperature and 

paleosalinity equations derived for Mytilus on the basis of benthic habitat and similar 

shell mineralogies.  However, with generic-level controls exerting a substantial influence 

on Mg/Ca and Sr/Ca ratios in Recent bivalves (Turekian and Armstrong, 1960), the 

comparison could be flawed.  

3.2 Methods 

 3.2.1 Sampling Locations: Specimens for sclerochronology were selected based 

on the results of the shell alteration investigation.  A suite of specimens that possessed 

both thick, contiguous shell and Sr/Ca and Mg/Ca ratios similar to Recent aragonitic (or, 

in the case of Anomia, calcitic) mollusks was assembled.  The samples included seven 

Baculites of differing diameters, two Eutrephoceras, two Hoploscaphites, three 

Inoceramus, one Anomia, and one Nymphalucina. 
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 These shells were sampled using a Dremel® variable-speed drill along 

ontogenetic growth at 2.5 mm intervals starting from the ontogenetically oldest part of 

shell available.  Samples were taken from the part of the shell where growth lines were 

spaced the furthest apart to maximize the precision.  The surface layer of shell was 

initially excavated into using a flat-bottomed, 3–mm bit to clear away surface 

contaminants and avoid the light isotopic ratios seen by Mitchell et al. (1994).  The 

internal shell layers were sampled with a 1-mm bit at a consistent depth that, whenever 

possible, did not penetrate to the inner layer of the shell, where isotopes could be 

enriched by metabolic CO2 as noted by Auclair et al. (2004) for Nautilus.  When shell 

material was limited, as in the Eutrephoceras, every other sample was taken for ICP-OES 

analysis and the even increments (0 mm, 5 mm, etc.) reserved for mass spectrometer 

analysis.  In other cases, each odd sample (2.5 mm, 7.5 mm, etc.) was collected such that 

it could be run for both analyses.  For each shell, samples were also taken 2.5 or 5.0 mm 

apart along specific growth lines, to serve as comparision to the range of values in the 

ontogenetic sequence. 

 3.2.2 Treatment and Analysis of Samples:  Treatment and analysis of samples 

followed the same ICP-OES and mass spectrometer protocol as discussed in Chapter 2.  

The ICP-OES samples (see Appendix C) were run first so that their data could be used as 

a minor-element filter for the mass spectrometer.  From these candidates, three specimens 

(depicted in Figure 20) were selected for isotopic analysis (see Appendix D).   

 3.2.3 Data Processing: Minor element data, reported in ppm, was once again 

translated into mMol/Mol Ca.  These data were then subjected to the Sr/Ca-Mg/Ca minor 

element filter as discussed in Chapter 2.  Sclerochronology candidates which fulfilled the 
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requirements of the minor element filter for at least 80% of their data points were then 

examined in terms of other minor element ratios that had been linked to altered δ18O 

values, namely Fe/Ca, Mn/Ca, Sr/Ca, and Na/Ca.  The three candidates with the minor 

element ratios least likely to be diagenetically altered were selected for isotopic analysis. 

 As in the shell alteration investigation, paleoceanographic parameters were 

calculated from the δ18O and δ13C ratios, as well as the concentrations of strontium and 

sodium.  Paleosalinity was calculated using the equation of Brand (1986): 

S = -5.769ln(A) + 28.380        (2) 

Salinity S is given in parts per thousand ± 0.5, and A is the ratio of ppm Sr / ppm Na, or 

the geometric mean of such ratios.  The salinity values for each point were then 

substituted into an equation (Wright, 1987) for the δ18O of the Western Interior Seaway 

water mass in which the organisms were living: 

S(WIS) = [1 – (δw(WIS)- δw(ocean)))/( δf - δw(ocean))] x S(ocean)    (3) 

Models of the Earth without polar ice caps provided the constants for δ18O of the open 

ocean, δw(ocean) = -1.22‰ PDB, and salinity of the open ocean, S(ocean) = 34.3‰ (Schmidt, 

1997).   Lastly, the δw(WIS) value and δ18O for each sample of shell material were 

substituted into Grossman and Ku’s molluscan aragonite paleothermometry equation: 

T = 21.8 - 4.69(δ18Oarag - δ18Ow)                                      (1) 

where δ18Oarag is the isotopic signature of the shell material.    
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FIGURE 21—Specimens Used in Sclerochronology 

A. Inoceramus Specimen I2 

  
B. Baculites Specimen B7 
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FIGURE 21—Specimens Used in Sclerochronology (Continued) 
 

 
 
Based on minor element concentrations, three specimens were selected to be examined 
with the mass spectrometer.  Inoceramus specimen I2 was from the Game Rach locality, 
and was infilled with, but not enclosed by, concretionary material.  Baculites specimen 
B7 was also from the Game Ranch locality, preserved directly in the shale.  
Eutrephoceras E2 was recovered from a concretion at the Trask Ranch locality. 
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3.3 Results 
 

 3.3.1 Inoceramus:  Of the bivalve specimens, I2 was selected because of its 

relatively uniform minor element concentrations (Figure 22).  The Nymphalucina 

specimen N1 was excluded because of peaks in Fe/Ca, the Inoceramus specimen I3 was 

not considered because of peaks in Mg/Ca, Mn/Ca, and Fe/Ca, and the Anomia specimen 

A1 and Inoceramus specimen I1 were dismissed because of numerous peaks in multiple 

minor elements.  The mean minor element ratios in the I2 shell material, in mMol/Mol, 

were Fe/Ca = 0.86 ± 1.49, K/Ca = 0.522 ± 0.142, Mg/Ca = 1.12 ± 0.42, Mn/Ca = 0.049 ± 

0.046, Na/Ca = 19.8 ± 0.7, and Sr/Ca = 2.25 ± 0.93.  Therefore, the specimen is 

considered favorable under the Sr/Ca-Mg/Ca minor element filter, and all other possible 

minor-element filters examined in Chapter 2.  The Al/Ca dataset was incomplete so is 

omitted in this analysis.  No general trends in minor element ratios were observed 

through ontogeny.  Noticable deviations in minor element ratios occurred only at the last 

data point, taken closest to the aperature of the shell.  At this point, the Mg/Ca and Fe/Ca 

ratios increased.  The increases, however, do not correspond with changes in isotopic 

composition (Figure 23). 

 In general, the δ18O and δ13C ratios for the Inoceramus specimen are inversely 

related.  A plot of these isotopes against each other (Figure 24), however, does not 

produce a significant correlation.  The exception to this pattern occurs in shell samples 

taken from 0-7.5 mm in distance from the umbo. Ontogenetically, these are the earliest 

shell samples.  In addition, the point at 12.5 mm, displays minima for both isotopic ratios. 

 For the four δ18O maxima that occur after 7.5 mm, labeled in Figure n+1, three are 

coincident with δ13C minima, while the other preceded the δ13C minima by one sampling 
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interval.  The δ18O minima also broadly correlate with salinity minima calculated from 

Brand’s Sr/Na equation (1986).  For the Inoceramus, the δ18O represented in the data 

ranges from -2.21‰ to -7.02‰, and salinity from 32.2‰ to 33.6‰, corresponding to 

paleotemperatures of 26.4 oC to a very unlikely paleotemperature of 48.9 oC.  The 

paleosalinity curve approximately parallels the δ18O curve, with the exceptions of the 

ontogenetically earliest sample and the two δ18O maxima (temperature minima).  These 

temperature minima are spaced ~40 mm apart and are of approximately the same 

amplitude.  The ontogenetically earlier minimum is ~7 oC warmer than the 

ontogenetically later minimum, while the ontogenetically earliest data point is ~8 oC 

warmer than the ontogenetically latest data point.  However, the ranges in temperature 

and salinity for the Inoceramus do not necessarily represent the total range possible for 

the organism’s lifespan.  The accretion of the inner nacreous layer of aragonite is such 

that a sample taken in a given location will contain not only the paleoceanographic 

signature of the conditions during formation, but, below that, the signatures of shell 

formed later.  Therefore, the sclerochronologic record of the Inoceramus is greatly time-

averaged.   Depending on the relative thickness of the layers secreted along the inside of 

the shell, the salinity and temperature profiles (Figure 25) that are produced may or may 

not be proportional to time.   

 Comparing the ontogenetic variability in δ18O and δ13C (n = 25) to the variability 

present in a single growth line at distance = 20 mm (n = 9), a lower standard deviation is 

present for the growth line than for the ontogenetic sequence.  The standard deviation of 

the ontogenetic sequence is 0.97‰ for δ18O and 0.67‰ for δ13C, whereas these values 

are 0.68‰ for δ18O and 0.49‰ for δ13C for the growth line.  Based on one-tailed t-tests 
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with a 0.05 level of significance, there is no statistically significant difference between 

the mean δ18O value of -5.46 ± 0.97‰ for the ontogenetic sequence and -5.39 ± 0.68‰ 

for the growth line, or between the mean δ13C value of 5.48 ± 0.67‰ for the ontogenetic 

sequence and 5.62 ± 0.49‰ for the growth line.  The sample taken from the I2 concretion 

produced no data due to mass spectrometer error. 
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FIGURE 22—Minor Element Ratios for Sclerochronology: 
Bivalves

 
The inoceramid bivalve I2 shows the most consistent, low Fe/Ca, Mg/Ca, and Mn/Ca 
values.  With twelve values for the minor element analysis, representing six centimeters, 
it is also the longest record for the sclerochronology candidate bivalves.  Therefore, this 
specimen was selected for isotopic analysis.  N1 = Nymphalucina, A1 = Anomia, I1-I3 = 
Inoceramus. 
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FIGURE 23—Sclerochronology of Inoceramus Specimen I2 
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FIGURE 24—δ18O Versus δ13C for Inoceramus Specimen I2 
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Although most relative maxima in the δ18O curve correspond to relative minima in the 
δ13C curve, a statistically significant linear correlation cannot be fit to the data. The data 
points below δ18O = 5.2‰ do not appear to fit any pattern; it is possible to see a slight 
negative trend to the clustered data of δ18O values heavier than 5.2‰.  
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FIGURE 25—Calculated Paleotemperature through “Ontogeny” for Inoceramus 
Specimen I2 

 

 
Although the “ontogenetic” sequence for the Inoceramus is time-averaged, a sine curve 
fits the temperature data reasonably well.   
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 3.3.2. Baculites:  Of the six Baculites specimens, B7 was selected because of its 

relatively uniform minor element concentrations (Figure 26), which satisfied all possible 

minor element filters.  The mean minor element ratios in the shell, in mMol/Mol, were 

Fe/Ca = 0.389 ± 0.218, K/Ca = 0.86 ± 0.26, Mg/Ca = 1.31 ± 0.91, Na/Ca = 21.4 ± 3.4 

(19.8 ± 0.9 without outlier), and Sr/Ca = 2.72 ± 0.29.  The Al/Ca and Mn/Ca datasets 

were incomplete so are omitted in this analysis.  No general trends in minor element 

ratios were observed over ontogeny.  Noticable deviations in minor element ratios 

occurred at 12.5 mm from the ontogenetically youngest point on the specimen, where 

Mg/Ca increased from 1.14 to 3.04 mMol/Mol, and 17.5 mm, where the Na/Ca ratio 

changed from 19.9 to 28.2 mMol/Mol.  In both cases, the sampling location directly 

following the deviation showed minor element ratios returning approximately to the pre-

deviation value.  As in the Inoceramus specimen, the increases in Na/Ca and Mg/Ca do 

not correspond with changes in isotopic composition (Figure 27). 

 In general, the δ18O and δ13C ratios for the Baculites specimen are directly related 

(Figure 28).  A plot of these isotopes against each other (Figure 29) does not produce a 

statistically significant trendline.  The sclerochronologic variations for the Baculites 

likewise show similar trends, albeit with vastly different magnitude fluctuations, between 

δ18O and δ13C data curves.  For every δ18O maximum, there is an equivalent δ13C 

maximum at the same location, or one sampling location later in time/distance.  Relative 

maxima occur at 5.0, 12.5, and 17.5 mm from the ontogenetically earliest sample.  

Relative minima occur at 0.0, 10.0, 15.0, and 25.0 mm.  Through ontogeny, the amplitude 

of the δ18O and δ13C excursions decreases. There does not appear to be any relationship 

between the δ18O and δ13C maxima and the salinity data curve (Figure 30) derived from 
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Brand’s Sr/Na equation (1986).  For the Baculites, δ18O ranged from -0.97‰ to -1.84‰, 

and salinity from 31.7‰ to 35.5‰, corresponding to paleotemperatures of 20.9 oC to 

22.6 oC.  The highest salinity value corresponds to the Na/Ca peak, and if this point is 

disregarded as a statistical outlier, the maximum salinity is 32.4‰ and the minimum 

paleotemperature is unaffected.  There is a possible general decrease in δ18O over 

ontogeny as well as the aforementioned trend in the amplitude of minima and maxima.   

 Comparing the ontogenetic variability in δ18O and δ13C (n = 11) to the variability 

present in a single growth line at distance = 15 mm (n = 8), a lower standard deviation is 

present for the ontogenetic sequence than for the growth line.  The standard deviation of 

the ontogenetic sequence is 0.24‰ for δ18O and 0.81‰ for δ13C, whereas these values 

are 1.23‰ for δ18O and 0.72‰ for δ13C for the growth line.  Based on one-tailed t-tests 

with a 0.05 level of significance, there is no statistically significant difference between 

the mean δ18O value of -1.28 ± 0.24‰ for the ontogenetic sequence and -1.65 ± 0.72‰ 

for the growth line, or between the mean δ13C value of -3.25 ± 0.81‰ for the ontogenetic 

sequence and -3.62 ± 0.42‰ for the growth line.  The sample taken from the B7 

concretion returned a δ18O value of -2.10‰ and a δ13C value of -23.65‰. 
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FIGURE 26—Minor Elements Used for Sclerochronology: Baculites 

 
Among six Baculites specimens (B2-B7) screened, B7 had the most consistent 
K/Ca, Mg/Ca, Mn/Ca, and Sr/Ca values.  Peaks in Mg/Ca and Na/Ca do exist at 
the middle of the ontogenetic sequence.
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                  FIGURE 27—Sclerochronology of Baculites Specimen B7 

 
While the deviation in Na/Ca ratio seen at 17.5 mm from the ontogenetically earliest 
sample influenced the calculated salinity of Baculites specimen B7, it did not coincide 
with a change in δ18O or δ13C.  There was also no associated change in δ18O or δ13C 
associated with the Mg/Ca peak at distance = 12.5 mm.
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       FIGURE 28—Stable Isotope Sclerochronology of Baculites Specimen B7 

 
In general, the δ18O or δ13C curves for Baculites specimen B7 parallel each other.  The 
three labeled maxima in the δ18O curve match with three maxima in the δ13C curve, 
though the amplitude of the variations in the δ13C curve is much greater. 
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FIGURE 29—δ18O Versus δ13C for Baculites Specimen B7 
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The δ18O and δ13C of Baculites specimen B7 do not produce a statistically significant 
linear fit.  There does, however, appear to be a general trend of increasing δ18O with 
increasing δ13C. 
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FIGURE 30—Calculated Paleotemperature and Paleosalinity for Baculites Specimen B7 
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3.3.3 Eutrephoceras: Of the Eutrephoceras specimens, E2 was selected because it 

offered the most expansive dataset.  Minor element ratios for the two specimens were 

comparable.  The E2 dataset included more samples taken from the inner whorls of the 

shell, including two samples from the neanoconch, the early developmental stage 

characterized in Eutrephoceras by cancellate ornamentation (Landman et al, 1983).  E2 

also had fewer mass spectrometer errors or underweight samples.  While the minor 

element ratios vary more than in the Inoceramus or Baculites specimens, the Sr/Ca ratio 

is reasonable with respect to the filter limits.  The Mg/Ca ratio peaks above 6.5 

mMol/Mol at 12.5, 32.5, and 62.5 mm from the ontogenetically earliest point (Figure 31). 

 All of these points are coincident with the appearance of cement upon the septa.  The 

cement is highly enriched in Mg, with Mg/Ca values of 71.9 mMol/Mol and 32.7 

mMol/Mol.  Fe/Ca and Mn/Ca ratios, also higher in the cement than in the shell, peak at 

these locations as well.  Na/Ca minima coincide with these maxima.  The cement nearest 

to the protoconch coincides with a slight increase in both δ18O and δ13C, although this 

could be circumstantial. 

 The δ18O and δ13C curves in Eutrephoceras specimen E2 appear to parallel each 

other (Figure 32), and when the stable isotopes are plotted against each other as in Figure 

33, a positive, statistically significant linear fit emerges.  This trendline has a strong r2 

value of 0.673 and a p-value of 4.52 x 10-4.  The isotopes share relative minima at 40, 55, 

75, 85, 105, and 170 mm from the protoconch.  The largest deviations are those at 55, 

105, and 175, and may represent a periodic trend.  There does not appear to be any trend 

in the amplitude of these minima, nor any overall trend in δ18O and δ13C.  Another 

relationship which emerges from the sclerochronologic investigation of Eutrephoceras 
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specimen E2 is, as in Baculites specimen B7, a general positive correlation between δ18O 

and salinity (Figure 34).  This relationship is stronger for the interior portion of the shell. 

 Clearly, the datapoints latest in ontogeny show anomalous δ13C and Na/Ca.  

 Comparing the ontogenetic variability in δ18O and δ13C (n = 28) to the variability 

present in a single growth line at distance = 125 mm (n = 8), a higher standard deviation 

is present for the ontogenetic sequence than for the growth line.  The standard deviation 

of the ontogenetic sequence is 0.80 ‰ for δ18O and 2.40 ‰ for δ13C, while these values 

are 0.29 ‰ for δ18O and 0.55 for δ13C for the growth line.  Based on one-tailed t-tests 

with a 0.05 level of significance, there is a statistically significant difference between the 

mean δ18O value of -1.28 ± 0.80 ‰ for the ontogenetic sequence and -0.73 ± 0.29 ‰ for 

the growth line, and between the mean δ13C value of -1.28 ± 2.40 ‰  for the ontogenetic 

sequence and -0.31 ± 0.55 ‰  for the growth line.  The sample taken from the E2 

concretion returned a δ18O value of -1.18 ‰ and a δ13C value of 0.18 ‰.  Three cement 

samples also returned values, shown on Figure 35. 
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FIGURE 31—Sclerochronology of Eutrephoceras Specimen E2 

 

The minor element sclerochronology of Eutrephoceras specimen E2 shows clearly the 
relationship between diagenetic alteration of shell and cementation.  Solid vertical lines, 
indicating the presence of cement, coincide with relative maxima in Fe/Ca, Mg/Ca, and 
Mn/Ca, which are minima in Na/Ca. 
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FIGURE 32—Stable Isotope Sclerochronology of Eutrephoceras Specimen E2 

 

The stable isotope sclerochronology of the Eutrephoceras specimen shows parallel curves 
for δ18O and δ13C, with nearly all minima and maxima coinciding.  Both curves show 
greater fluctuations before distance = 30 mm.  Once again, solid vertical lines indicate the 
location of cement. 
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FIGURE 33—δ18O Versus δ13C for Eutrephoceras Specimen E2 
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The relationship between δ18O and δ13C is positive, with an r2 value of 0.673 and a p 
value of 4.52 x 10-4,.  The majority of data points cluster from -2‰ to 0.5‰ for δ13C and 
-0.5‰ to -1.5‰ for δ18O. 
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FIGURE 34—Calculated Paleotemperature and Paleosalinity for Eutrephoceras 
Specimen E2 

 

 
Calculated paleotemperature shows several fluctuations, with the largest being spaced at 
55, 105, and 170 mm from the protoconch.  Paleosalinity coincides with the isotopic 
trends for the first half of the ontogenetic sequence. 
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3.4 Discussion 

 3.4.1. Inoceramus: The slight negative correlation between δ18O and δ13C in 

Inoceramus specimen I2 (Figure 24) is characteristic of bivalves with a slow rate of 

metabolism (Ivany et al., 2003).  Instead of reflecting metabolism, the isotopic signature 

in such mollusks reflects environmental parameters such as salinity and temperature.  In 

the Western Interior Seaway, a specimen of the bivalve Artica ovata (Fatherree, 1995) 

also showed a negative correlation between stable isotopes.  This pattern was noted for 

the Recent bivalve Adamussium colbecki, an Antarctic scallop (Barrerra et al., 1990).  

The Recent Mercenaria mercenaria specimen from the Long Island Sound examined by 

Elliot et al. (2003) also showed such a correlation, as did the Eocene Cucullaea raea after 

6 mm of ontogenetic growth (Dutton et al., 2002).  In contrast, Mercenaria mercenaria 

specimens found farther south showed a positive correlation between δ18O and δ13C 

(Elliot et. al., 2003), as did the Cucullaea raea before 6 mm growth.  Previous studies of 

Inoceramus also revealed positive correlations between δ18O and δ13C.  Tourtelot and 

Rye (1969) found a positive correlation between stable isotopes in both the aragonitic 

and calcitic layers of an Inoceramus specimen, though their sequences for aragonite and 

calcite were limited to only had nine and ten data points, respectively. The 

ontogenetically earliest three of eight samples taken by Fatheree (1995) showed a 

positive relationship δ18O and δ13C, whereas the ontogenetically latest four showed a 

negative correlation.  Whittaker et al. (1988) showed a similar pattern for a 

contemporaneous (but farther north) Inoceramus. Of the 25 samples taken from 

Inoceramus specimen I2, the first six to eight show a positive relationship between δ18O 

and δ13C (Figure 23).   This is likely the signature of a metabolic rate that decreases with 
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age, which is common in bivalves as energy in adulthood is redirected to reproductive 

maturation and spawning (Ivany et al., 2003).  The inoceramid used in Fatheree et al. 

(1995) was from the Baculites compressus biozone in South Dakota, as was the 

Inoceramus specimen I2 used in this study.  Both show δ18O and δ13C related positively 

for the first ~ 15 cm of (time-averaged) growth, suggesting that metabolic rate decreases 

at approximately the same time in each specimen.   

 Interpretations of ontogenetic trends in δ18O, δ13C, and calculated temperature are 

hampered by the time-averaging present in the data.  The 22.5-degree total temperature 

range of 26.3 to 48.8 oC (Figure 25) is clearly unrealistic for a shallow ocean during a 

warm greenhouse climate interval.   However, two more realistic temperatures can be 

found on the paleotemperature curve for the Inoceramus, 34.0 and 26.4 oC, at the two 

relative minima.  While it should be remembered that these temperatures are influenced 

time-averaging inherent in the slowly deposited nacreous structure, they are clearly 

different from the remainder of the temperature data points.  These points appear to 

represent marine conditions typical of the overlying water mass.  These could be initiated 

by seasonal changes in oceanic circulation which produce a mixing of the water column.  

The length of such an interval with respect to the length of intervals with bottom-water 

isotopic signatures is unknown, because the Inoceramus could slow shell precipitation at 

such times and therefore produce an isotopic record biased towards bottom-water 

conditions.  
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 While intervals of bottom-water can be identified in the sclerochronology of 

Inoceramus specimen I2, they cannot be readily explained.  The heavy δ13C and light 

δ18O values are typical of Western Interior Seaway epifauna, with δ13C and δ18O values 

of 0.77 to 3.12‰ and -2.10 to -5.34, respectively, found for Anomia.  On the other hand, 

Inoceramus remains found outside of the Western Interior Seaway do not show such 

isotopic ratios.  For instance, those found in Mid-Late Campananian deep-ocean 

environments in the South Atlantic produced average δ13C and δ18O values of 1.38 ± 

0.05‰ and 0.70 ± 0.14‰, respectively (Saltzman and Barron, 1982).  Therefore, it is 

unlikely that the isotopic ratios in the Inoceramus represent biological factors peculiar to 

Inoceramus.  Therefore, the bottom-water represents an isotopically unique environment. 

 An interesting observation with regards is that the salinity recorded by 

Inoceramus I2 stays close to normal marine conditions (~33‰) throughout ontogeny.  

However, using the δ18O value of -1.27‰ for the Western Interior Seaway and assuming 

a decrease of 1‰ in δw for every 5‰ increase in salinity (Epstein and Mayeda, 1953), in 

order to bring the Inoceramus paleotemperature down the ~30 oC necessary for shell 

precipitation. Even if the salinity equation used in this study is discarded, however, using 

the δ18O value of -1.27‰ for the Western Interior Seaway to reach realistic 

paleotemperatures for the Inoceramus, salinities in excess of 58‰ are needed, which 

would be inhospitable to Anomia.  Therefore, salinity is likely not the cause for the 

disparity between bottom-water and the overlying water mass.  If instead, the salinity 

value is accepted, δ18O of the bottom-water would have to be -3.70‰ to produce realistic 

paleotemperatures.  An  absurdly depleted freshwater input of -78‰ is needed to produce 

this value, and this would surely leave a signature on the Sr/Na ratios of the shells.  
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Another mechanism for reaching this value is unknown, as changing the signal of 

freshwater between -5 and -25‰ does not significantly affect the δ18O result for 

seawater, and increasing the quantity of freshwater input would lower the δ18O but also 

change salinity and provide light δ13C.  The δ13C values of the epifauna are equally 

difficult to explain.  Escape of methane present in the sediments would contribute δ13C 

on the order of -15 to -20‰, consistent with the δ13C values of shells for infaunal 

organisms but not those for epifaunal organisms.  Addition of freshwater would likewise 

contribute negative δ13C isotopes.  Ocean anoxia is know to correlate with heavy δ13C 

values in the unoxidized organic carbon, but how these values could be incorporated in 

molluscan shell is unknown.  Therefore, at this time, it must be concluded that the light 

δ18O and heavy δ13C of the molluscan epifauna represent a distinct geochemical 

environment, without explanation, that may at times be mixed or replaced by water from 

the overlying water mass. 

 The length of cycles present in δ18O, δ13C, and calculated temperature are 

impossible to interpret numerically as it is unknown how many sub-layers within the thin 

aragonitic shell each sampling penetrated and the amount of time each layer represents 

(which may differ between layers).  These ambiguities could be circumvented if a 

specimen could be sampled, using a microscope-mounted drill, at a fine enough scale.  

Considering that the entire aragonitic layer for specimen I2 is ~1 mm thick, this does not 

seem feasible.  A better alternative is to find Inoceramus specimens with intact outer 

calcitic layers, which accreted along the growth axis, and therefore can be sampled 

throughout ontogeny.  The prismatic calcite layer can unfortunately be fragile, as it is 

usually separated from the aragonitic layer and fragmented, but sampling a reasonably 
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large calcitic shell piece (that can be readily oriented with respect to ontogeny) would 

resolve many questions about the bivalve. 

 3.4.2. Baculites:  The slight positive correlation between δ18O and δ13C (Figures 

28 and 29) is characteristic of a mollusk that is secreting shell that is influenced by 

metabolic CO2, usually implying a rapid metabolic rate (Ivany et al., 2003).  A negative 

correlation between these two variables was also present for Baculites specimens from 

the Western Interior Seaway examined by Tourtelot and Rye (1969) and Forester et al. 

(1977).  However, Whittaker et al. (1988) found well-defined negative correlations 

between stable isotopes in Baculites.  It is also present in the first few samples of the 

Baculites studied by Fatherree et al. (1998).  Their samples taken later in the ontogeny of 

Baculites showed a negative correlation, which most likely indicates a decrease in the 

baculitid’s rate of growth.  A useful follow-up study would be examining the relationship 

between δ18O and δ13C with respect to the diameter of the baculite, preferably using 

fossils with longer contiguous shell records. The fluctuations in δ18O, salinity, and 

temperature do not appear to be significant, and imply that the baculitid was living in the 

upper/intermediate water mass for the time span represented in the shell precipitated.  

The minima in δ13C are not associated with changes in salinity, so likely do not represent 

migration into bottom-water.  These fluctuations could be due to fluctuations in dissolved 

inorganic carbon within the water column, seasonal changes in food source, or alteration 

that is not coincident with minor element alteration.   

 The temperature recorded by Baculites specimen B7, excluding the outlier of 24.2 

oC at 25 mm from the ontogenetically earliest sample (a product of an unusually high 

Na/Ca ratio) ranges from 20.2 to 22.3 oC.  This range represents reasonable living 
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conditions for a mollusk, and reasonable paleotemperatures for a shallow marine setting 

during a greenhouse climate interval.  Forester et al. (1977) derived a temperature range 

from 17 to 25 oC for a 10-cm Baculites compressus var. robinsoni of the Western Interior 

Seaway.  Fatherree et al. (1998) found an even greater temperature range, 19.7 to 29.7 oC, 

for their 44-cm ontogenetic sequence of a Baculites compressus found at Game Ranch.  

Because the temperature range for that specimen depends on the decrease in calculated 

temperature through ontogeny, within a 2.5-cm segment, however, the temperature 

difference is 0.4 to 5.8 oC, most often ~2.5oC.  This is comparable to the range for 

baculitid B7.  Because of the truncated temperature range, the ontogenetic growth in the 

specimen likely represents less than one year, as is further suggestede by Fatherree et 

al.’s (1998) analysis.  Recent Nautilus in the wild grows 9-44 mm/yr, with 24-44 mm/yr 

for adolescent individuals (Saunders, 1983).  This should be considered a minimum 

growth rate for the Baculites because Nautilus must precipitate shell in a cold-water, 

high-pressure environment.  Both of these physical factors are correlated with slower 

shell precipitation in Recent mollusks (Mann, 1992).   

 3.4.3. Eutrephoceras: Compared to the Eutrephoceras specimens studied by 

Landman et al. (1983), the Eutrephoceras in this study has a similar, but statistically 

significant, positive correlation between δ18O and δ13C (Figure 33).  Recent Nautilus 

individuals raised in an aquarium instead show generally negative correlations, except for 

the first few millimeters of growth (Landman et al., 1984). This cannot be the effect of 

changes in feeding habits, as the majority of the ontogenetic sequence for the aquaria-

raised specimens was represented by pre-hatching growth. Whether the δ13C of the 

aquarium water changed over the period of study is unknown, as is the general health of 
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the organisms, who died shortly after hatching and precipitated abnormally-shaped shells. 

As in the Nautilus and in the Eutrephoceras studied by Landman et al. (1983), the 

Eutrephoceras specimen E2 shows an increase to heavier isotopes in the first few 

centimeters of growth.  In addition, the variability in isotopes prior to a distance of 35 

mm from the E2 protoconch is low.  This suggests a protected environment for the young 

nautiloid, presumably the egg sac.  Through ontogeny, the Eutrephoceras shell shows 

slowly decreasing paleosalinities, likely reflecting offshore migration, as in Recent Sepia 

(Bettencourt and Guerra, 1999).  With paleosalinities of ~27‰ during the first 75 mm of 

phragmacone accretion, these are comparable to the salinities calculated for 

Placenticeras, so likely represent the uppermost waters of the Western Interior Seaway.  

The sharp temperature drop prior to 35 mm could represent the migration out of a near-

planktic mode of life into one where the organism is living in colder water and swimming 

actively through the water column, where it accumulates both seawater carbonate and 

metabolic carbon with slightly varying isotopic signature.  

 If the three largest temperature peaks on Figure 34 represent an annual cycle, the 

Eutrephoceras is growing at 60-80 mm in a year, slightly higher than the average growth 

rate for adolescent Nautilus, and comparable to the growth rate for the cuttlefish Sepia 

offinalis living off the coast of Spain (Bettencourt and Guerra, 1999).  Because the 

habitat of the Eutrephoceras is determined to be warm-water, the growth rate for Sepia is 

realistic.   

 The δ13C curve for Eutrephoceras specimen E2 shows a δ13C range of -4.2 to -

0.4‰, comparable in values and range to the Eutrephoceras in Landman et al. (1983) and 

in range alone to Nautilus (Landman et al., 1994). There is a single very negative δ13C 
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excursion, late in ontogeny, which likely represents a migration into the bottom-water, 

because the salinity increases dramatically at the same time.  Other excursions at 75 and 

105 mm into this bottom water may be recorded by the δ13C and salinity curves, with 

lower-amplitude δ13C deviations. Why the Eutrephoceras would migrate into the bottom-

water is a good question.  It is possible that a preferred food source was present in the 

benthic sediments, and if this is the case, this research supports the notion of 

nektobenthic ammonites hovering above the seafloor when feeding.  Another potential 

explanation is that the bottom-waters provided refuge from vertebrate predators during 

times of susceptibility, such as spawning or septal secretion.  On the other hand, the 

signatures may instead record mixing events with the light- δ18O bottom water. 
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4. CONCLUSIONS 
 

 When performing stable isotope sclerochronology, or when using stable isotopes 

in molluscan shell for paleoclimate proxies, diagenetically altered shell must be avoided. 

 The results of this study suggest that for paleotemperature reconstruction based on the 

isotopic analysis of aragonite, one must be selective. Specimens preserved in shale are 

preferable, as shown by the “Mode of Preservation” suite and the higher standard 

deviations for paleotemperatures derived from fossils found in concretions (e.g., Trask 

Ranch Inoceramus versus Game Ranch Inoceramus).  In ammonites, phragmacones 

rather than septa should be sampled, given the greater likelihood of alteration in the 

latter.  Opalescent or non-opalescent shell is acceptable, but color appears to have a slight 

effect on δ18O which may affect diagenetic alteration.  For the most part, δ18O values are 

fairly robust even in the presence of cement, although, as seen at the Trask Ranch, the 

cementation phase may be a crucial factor in that later, meteoric cements can have a 

substantial influence on δ18O.  Based on the analysis, a series of minor-element filters 

were developed for aragonitic shell at the three sites.  Anomalously low δ18O values 

resulted from Sr/Ca ratios > 1.8 mMol/Mol, Na/Ca ratios > 10 mMol/Mol, Mn/Ca ratios 

< 11 mMol/Mol, Mg/Ca ratios < 6.5 mMol/Mol, and Fe/Ca ratios < 7 mMol/Mol.  These 

limits were derived for the Kremmling sampling site, which had the greatest quantity of 

altered shell.  Comparable values exist for the Trask Ranch site, but more data points of 

shell with altered δ18O values are needed to define useful limits.  The results for 

alteration of aragonitic δ18O should not be extended to calcite without separate 
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investigation of calcitic mollusks, because the different crystal structure of calcitic shells 

will react differently to the influx of diagenetic waters. 

 To glean information about paleoproductivity, molluscan diet, or the presence of 

methane using δ13C ratios, a different set of criteria apply.  Shale or concretions may be 

used, so long as neither contains cement directly in the shells.  Septa and phragmacone 

samples both provide useful information, as most of the difference in isotopes between 

septa and phragmacone samples was in δ18O.  Opalescence and shell color had little 

bearing on δ13C values for the sites investigated. 

 Furthermore, the concentrations of certain minor elements, such as K, Na, and Al, 

appear to be quite robust.  Sr is also robust when meteoric water is not implicated in 

diagenesis.  These elements are not readily altered by the same diagenetic processes that 

affect δ18O and δ13C.  Other minor elements, such as Fe, Mg, and Mn, are easily altered. 

Implementation of an empirically-derived Sr/Ca-Mg/Ca filter eliminated 

isotopically light, altered specimens.  When these data points were removed, fields 

emerged on stable isotope cross-plots for each genus investigated.  The confidence limits 

for the benthic bivalve Inoceramus did not overlap the nektic ammonites Baculites, 

Placenticeras, and Hoploscaphites, implying that the environments were distinct.  

Calculations from the data support a very light δ13C, methane-rich benthic habitat.  The 

salinity figure for the intermediate/upper water is below normal salinity and the salinity 

figure for the bottom-water is close to normal salinity.  There is no evidence for a distinct 

surface water mass, as a gradational series of paleosalinities and paleotemperatures were 

derived for the genera present in the Baculites compressus/cuneatus biozones.  These 

include: 
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(1) Game Ranch Baculites: S = 30.6 ± 0.8‰, T = 20.9 ± 4.9 oC 

(2) Trask Ranch Baculites: S = 29.9 ± 2.0‰, T = 24.8 ± 4.2 oC 

(3) Game Ranch Placenticeras: S = 28.1 ± 1.1‰, T = 30.1 ± 4.9 oC 

(4) Game Ranch Hoploscaphites: S = 27.3‰ (n = 1), T = 36.5 (n = 1) oC 

(5) Game Ranch Inoceramus: S = 31.1 ± 1.9‰, T = 36.1 ± 3.2 oC 

(6) Trask Ranch Inoceramus: S = 27.7 ± 9.6‰, T = 31.5 ± 4.9 oC 

(7) Game Ranch Nymphalucina: S = 31.7 ± 0.6‰, T = 14.8 ± 1.2 oC 

The clearly unrealistic paleotemperatures for the benthic genera such as Inoceramus (and 

possibly the Hoploscaphites as well) cannot be explained at present.  Methane seeps, a 

feature of the Western Interior Seaway during the Campanian, would contribute 

isotopically light δ13C like the concretions and cements, not the heavy values seen in 

shell for this dataset and in prior research.  Manipulation of the values for salinity and 

δ18O(freshwater) in order to produce reasonable paleotemperatures results in salinities and 

freshwater geochemistries that are as unrealistic as the paleotemperatures were.   

Shale and concretions are both viable data sources for strontium and sodium data, as are 

both septa and phragmacone samples of ammonites.  Opalescent shell should be selected, 

and color may have some influence on the depletion of Sr/Ca ratios.  The presence of 

cementation, however, generally need not worry the paleosalinity investigator, at least at 

the localities investigated in this study. 

δ18O and δ13C sclerochronology of mollusks screened by the minor element filter 

reveals that Inoceramus precipitates most of its shell in bottom waters of unusual isotopic 

composition.  There are two excursions into more normal paleotemperatures, but these do 

not correlate with any changes in the δ13C of the benthic organisms.  Because Inoceramus 
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is sessile, these excursions must represent environmental changes.  On the other hand, 

Eutrephoceras precipitates most of its shell in the upper/intermediate waters but shows 

excursions which likely reflect migration into the bottom waters.  In the Eutrephoceras, 

changes in δ18O are concurrent with and of the same magnitude as changes in δ13C. 

Baculites appears to remain in the upper/intermediate waters, but shows fluctuations in 

δ13C that could represent oceanic productivity and/or the organism’s food source. 
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APPENDIX A: SHELL ALTERATION MASS SPECTROMETER DATA 
 
 

Mode of Preservation Suite 
 

Preserved Directly in Shale: 

Sample  Location Genus δ18O, vs. PDB δ13C, vs. PDB 

MP-1 Game Ranch, SD  Placenticeras -3.58 -1.72 

MP-2 Game Ranch, SD Placenticeras -1.26 -0.93 

MP-3 Game Ranch, SD Placenticeras -2.90 -1.65 

MP-4 Game Ranch, SD Inoceramus -3.05 4.32 

MP-5 Game Ranch, SD Inoceramus -4.59 5.04 

MP-6 Game Ranch, SD Baculites -0.35 -0.81 

MP-7 Game Ranch, SD Baculites -3.09 1.44 

MP-8 Game Ranch, SD Nymphalucina 0.39 1.02 

MP-9 Game Ranch, SD Nymphalucina 0.04 -18.20 

 
Preserved in Concretions: 

Sample  Location Genus δ18O, vs. PDB δ13C, vs. PDB 

MP-10 Kremmling, CO Placenticeras -18.46 -3.99 

MP-11 Kremmling, CO Placenticeras -15.51 -6.72 

MP-12 Kremmling, CO Placenticeras -15.13 -7.44 

MP-13 Game Ranch, SD Inoceramus -4.51 2.80 

MP-14 Game Ranch, SD Inoceramus -3.35 -0.91 

MP-15 Trask Ranch, SD Inoceramus -1.38 5.66 

MP-16 Game Ranch, SD Baculites -1.61 -0.46 

MP-17 Game Ranch, SD Baculites -0.64 -1.42 

MP-18 Trask Ranch, SD Baculites -1.00 -1.98 

MP-19 Trask Ranch, SD Nymphalucina -1.93 -2.68 

MP-20 Trask Ranch, SD Nymphalucina -9.07 -13.00 
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APPENDIX A (CONTINUED) 
 
 

Shell Testing Location Suite 
 

Shell Taken from Septum: 

Sample  Location Genus δ18O, vs. PDB δ13C, vs. PDB 

SC-1S Game Ranch, SD Placenticeras -3.71 -3.74

SC-2S Kremmling, CO Baculites -13.12 -8.64

SC-3S Kremmling, CO Placenticeras N/A N/A

SC-4S Trask Ranch, SD Hoploscaphites -3.69 -8.36

SC-5S Trask Ranch, SD Baculites -2.02 -4.85

SC-6S Trask Ranch, SD Baculites -3.48 -10.07

SC-7S Trask Ranch, SD Baculites -2.96 -9.09

SC-8S Trask Ranch, SD Baculites -2.08 -10.08

SC-9S Trask Ranch, SD Baculites -3.59 -7.58

SC-10S Trask Ranch, SD Baculites -1.81 -2.47

 
Shell Taken from Phragmacone Adjacent to Septum: 

Specimen  Location Genus δ18O, vs. PDB δ13C, vs. PDB 

SC-1P Game Ranch, SD Placenticeras -2.91 -2.67

SC-2P Kremmling, CO Baculites N/A N/A

SC-3P Kremmling, CO Placenticeras -8.86 -14.18

SC-4P Trask Ranch, SD Hoploscaphites -3.64 -7.46

SC-5P Trask Ranch, SD Baculites -2.31 -3.76

SC-6P Trask Ranch, SD Baculites -2.19 -1.79

SC-7P Trask Ranch, SD Baculites -1.85 -14.66

SC-8P Trask Ranch, SD Baculites -1.71 -1.71

SC-9P Trask Ranch, SD Baculites -2.82 -6.29

SC-10P Trask Ranch, SD Baculites -1.36 -2.36
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APPENDIX A (CONTINUED) 
 
 

Shell Color Suite 
 

Kremmling, Colorado, samples 

Sample  Genus Color Class δ18O, vs. PDB δ13C, vs. PDB 

SC-1 Placenticeras Tan -16.17 -3.74
SC-2 Placenticeras Cream N/A N/A
SC-3 Placenticeras Moccasin -15.58 -6.63
SC-4 Placenticeras Yellow -13.06 -7.01
SC-5 Placenticeras Opalescent White -15.01 -6.99
SC-6 Hoploscaphites Moccasin -14.65 -7.01
SC-7 Hoploscaphites Cream -11.15 -4.17
SC-8 Hoploscaphites Moccasin -14.36 -13.07
SC-9 Hoploscaphites Tan -14.28 -6.48
SC-10 Hoploscaphites Wheat -14.25 -5.62
SC-11 Baculites Cream -14.63 -6.14
SC-12 Baculites Brown -15.06 -8.29
SC-13 Baculites Cream -15.17 -8.15
SC-14 Baculites Wheat -12.66 -7.59
SC-15 Baculites Yellow -15.09 -7.12
SC-16 Inoceramus Tan -8.87 -0.88
SC-17 Inoceramus Wheat -13.30 -6.93
SC-18 Inoceramus Moccasin -14.47 -7.67
SC-19 Anomia Tan -5.34 0.77
SC-20 Anomia Seashell -3.92 1.84
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APPENDIX A (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Game Ranch, South Dakota, samples 

Sample  Genus Color Class δ18O, vs. PDB δ13C, vs. PDB 

SC-21 Placenticeras Opalescent White N/A N/A
SC-22 Placenticeras Opalescent White -3.45 -2.77
SC-23 Placenticeras Linen -3.61 -2.93
SC-24 Placenticeras Opalescent White -3.12 -3.27
SC-25 Placenticeras Opalescent Yellow -2.05 -1.89
SC-26 Hoploscaphites Moccasin -4.51 0.54
SC-27 Baculites Seashell -1.36 -1.97
SC-28 Baculites Opalescent White -0.39 -1.48
SC-29 Baculites Opalescent White -1.18 -0.65
SC-30 Baculites Linen -0.54 -0.91
SC-31 Baculites Opalescent White -1.93 0.44
SC-32 Inoceramus Grey -4.54 2.36
SC-33 Inoceramus Brown -4.22 5.24
SC-34 Inoceramus Orange -4.29 4.97
SC-35 Inoceramus Linen -5.26 5.80
SC-36 Inoceramus Seashell -3.98 4.47
SC-37 Anomia Grey -3.87 0.92
SC-38 Anomia Grey -2.10 3.12
SC-39 Nymphalucina Seashell 0.14 -0.29
SC-40 Nymphalucina Cream 0.42 1.03

 



www.manaraa.com

 

151 

APPENDIX A (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Trask Ranch, South Dakota, samples 

Sample  Genus Color Class δ18O, vs. PDB δ13C, vs. PDB 

SC-41 Hoploscaphites Tan -4.41 -1.10
SC-42 Hoploscaphites Moccasin -5.41 -7.22
SC-43 Hoploscaphites Linen -3.45 -2.91
SC-44 Hoploscaphites Orange -3.97 -7.40
SC-45 Hoploscaphites Opalescent Grey -3.11 -0.05
SC-46 Inoceramus Tan -3.46 3.31
SC-47 Inoceramus Opalescent White -3.07 1.43
SC-48 Inoceramus Moccasin -4.06 3.48
SC-49 Inoceramus Seashell -3.84 0.18
SC-50 Inoceramus Wheat -4.34 1.84
SC-51 Baculites Opalescent White -1.18 -2.43
SC-52 Baculites Opalescent Seashell -3.22 -5.17
SC-53 Baculites Seashell -2.27 -2.76
SC-54 Baculites Yellow -2.27 -6.33
SC-55 Baculites Brown -1.05 -2.34
SC-56 Drepanocheilus Wheat -5.66 -13.65
SC-57 Drepanocheilus Seashell -2.31 -3.78
SC-58 Drepanocheilus Grey -5.89 -16.54
SC-59 Anisomyon Orange -6.58 -10.76
SC-60 Anisomyon Seashell -6.54 -8.58
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APPENDIX A (CONTINUED) 
 
 

Cementation Suite 
 

Kremmling, Colorado, samples 

Sample  Shell Cement Concretion (δ18O, δ13C),  
vs. PDB 

CEM-1 
Hoploscaphite
s 

 
Sparry yellow 

 
 
Grey 

(-12.93, -11.87) 
(-13.99, -5.92) 
(-10.64, -9.10) 

CEM-2 
Hoploscaphite
s 

 
None 

 
 
None 

(-13.50, -11.87) 
None 
None 

CEM-3 
Placenticeras  

Sparry clear 
 
 
Tan 

(-14.45, -7.40) 
(-17.02, -4.64) 
(-13.71, -6.63) 

CEM-4 
Baculites  

None 
 
 
Tan 

(-14.94, -8.00) 
None 
(-14.33, -6.54) 

CEM-5 
Baculites  

None 
 
 
Tan 

(-14.68, -11.54) 
None 
(-12.62, -11.17) 

CEM-6 
Baculites  

Agate moccasin 
 
 
Tan 

N/A 
(-6.97, -2.97) 
(-12.50, -6.39) 

CEM-7 
Baculites  

Sparry white 
 
 
Grey 

(-14.89, -8.19) 
(-10.90, -8.52) 
(-14.07, -11.30) 

CEM-8 
Baculites  

Sparry yellow 
 
 
Grey 

(-15.15, -10.19) 
(-8.00, -7.57) 
(-12.87, -13.36) 

CEM-9 

Baculites 
 

 
1. Blocky clear 
2. Sparry clear 

 
 
 
None 

(-15.04, -6.90)  
1. (-23.74, -3.59) 
2. (-10.03, -7.55) 
None 

CEM-10 

Baculites 
 

 
1. Agate yellow 
2. Blocky clear 

 
 
 
Tan 

 (-14.43, -6.83) 
1. (-14.04, -4.94) 
2. (-14.34, -3.17) 
None 
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APPENDIX A (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
Game Ranch, South Dakota, samples 

Sample  Shell Cement Concretion 
(δ18O, δ13C),  
vs. PDB 

CEM-11 
Placenticeras  

None 
 
 
None 

(-3.68, -5.40) 
None 
None 

CEM-12 
Placenticeras  

None 
 
 
Yellow-Brown 

(-4.62, -3.89) 
None 
(-1.72, -7.81) 

CEM-13 
Baculites  

None 
 
 
Yellow-Brown 

N/A 
None 
(-1.66, -11.00) 

CEM-14 
Baculites  

None 
 
 
None 

(-1.67, -0.73) 
None 
None 

CEM-15 

Baculites 
(2 samples) 

 
 
None 

 
 
 
1. Red-Brown 
2. Dark Grey 

1. (-0.53, -0.83) 
2. N/A 
None 
1. (-1.19, -6.83) 
2. N/A 

Trask  Ranch, South Dakota, samples 

Sample  Shell Cement Concretion 
(δ18O, δ13C),  
vs. PDB 

CEM-16 

Hoploscaphite
s  

 
1. Sparry yellow 
2. Sparry moccasin

 
 
 
Dark grey 

(-1.85, -6.54) 
1. (-9.24, -12.67) 
2. (-4.24, -10.45) 
(-1.68, -17.75) 

CEM-17 

Hoploscaphite
s  
(2 samples) 

 
 
1. Sparry yellow 
2. Sparry tan 

 
 
 
 
Dark grey 

1. (-3.19, -6.88) 
2. (-2.46, -6.98) 
1. (-4.53, -10.47) 
2. (-8.66,-12.84) 
(-1.80, -18.86) 

CEM-18 
Hoploscaphite
s 

 
None 

 
 
Dark grey 

(-4.99, -10.34) 
None 
(-2.38, -19.14) 
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APPENDIX A (CONTINUED) 
 
 

Cementation Suite (Continued) 
 

Trask  Ranch, South Dakota, samples (continued) 

Sample  Shell Cement Concretion 
(δ18O, δ13C),  
vs. PDB 

CEM-19 

Hoploscaphite
s (2 samples) 

 
 
1. Sparry moccasin 
2. Sparry moccasin

 
 
 
 
Dark grey 

1. (-4.87, -7.95) 
2. (-4.19, -7.18) 
1. (-6.03, -10.58) 
2. (-6.50, -10.21) 
(-1.86, -17.65) 

CEM-20 
Hoploscaphite
s 

 
None 

 
 
Grey 

N/A 
None 
(-1.69, -25.09) 

CEM-21 

Baculites  
 
 

 
1. Sparry tan 
2. Blocky brown 

 
 
 
Grey 

(-1.06, -4.86) 
1. (-1.05, -9.96) 
2. (-4.38, -7.87) 
(-2.11, -19.21) 

CEM-22 

Baculites  
(2 samples) 

 
 
1. Sparry yellow 
2. Blocky yellow 

 
 
 
 
Grey 

1. N/A 
2. (-1.25, -5.11) 
1. (-5.73, -11.45) 
2. (-4.04, -10.09) 
(-4.41, -19.91) 

CEM-23 

Baculites  
 

 
1. Blocky mocc. 
2. Blocky seashell 

 
 
 
Grey 

(-5.69, -9.05) 
1. (-11.98, -14.37) 
2. (-13.78, -16.34) 
(-3.50, -19.60) 

CEM-24 
Baculites  
 

 
Sparry yellow 

 
 
Dark Grey 

(-3.15, -11.34) 
(-1.95, -12.73) 
(-1.70, -19.84) 

CEM-25 
Baculites  
 

 
Blocky yellow 

 
 
None 

N/A 
(-1.82, -19.48) 
None 

CEM-26 
Baculites  
 

 
Sparry grey-brown 

 
 
Grey 

(-3.73, -8.49) 
(-1.82, -19.48) 
(-6.21, -10.47) 

CEM-27 
Baculites  
 

 
Sparry linen 

 
 
Dark Grey 

(-2.24, -7.23) 
(-1.10, -16.97) 
(-1.35, -24.54) 
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Cementation Suite (Continued) 
 

Trask  Ranch, South Dakota, samples (continued) 

Sample  Shell Cement Concretion 
(δ18O, δ13C),  
vs. PDB 

CEM-28 
Baculites  

Blocky, yellow-
moccasin 

 
 
Dark grey 

(-3.07, -8.01) 
(-4.81, -21.00) 
(-1.29, -24.70) 

CEM-29 
Baculites  

None 
 
 
Grey 

(-1.47, -1.31) 
None 
(-2.29, -18.58) 

CEM-30 

Baculites  
1. Sparry dark 
grey 
2. Agate brown 

 
 
 
Grey 

(-2.96, -5.45) 
1. (-1.72, -12.96) 
2. (-8.55, -11.72) 
(-1.70, -18.64) 

CEM-31 
Baculites  

Agate yellow 
 
 
None 

(-2.35, -2.51) 
(-10.20, -12.17) 
None 

CEM-32 
Baculites  

Sparry seashell 
 
 
None 

(-5.21, -5.52) 
(-10.02, -12.67) 
None 

CEM-33 
Baculites  

None 
 
 
Dark Grey 

(-2.58, -2.09) 
None 
(-4.02, -19.86) 

CEM-34 
Baculites  

None 
 
 
Dark Grey 

(-3.16, -4.51) 
None 
(-1.24, -25.75) 

CEM-35 
Baculites  

None 
 
 
Dark Grey 

(-0.98, -1.97) 
None 
(-1.62, -14.28) 
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APPENDIX B: SHELL ALTERATION ICP DATA 
 
 

Mode of Preservation Suite 
 

Preserved Directly in Shale 

Specimen [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

MP-1 349831.691 N/A N/A
MP-2 175693.342 N/A N/A
MP-3 373965.603 N/A N/A
MP-4 341289.398 N/A N/A
MP-5 322061.902 N/A N/A
MP-6 334993.853 N/A N/A
MP-7 370032.558 N/A N/A
MP-8 391581.568 N/A N/A
MP-9 321557.153 N/A N/A

Preserved in Concretions

Specimen [Ca]
ppm

[Al] 
ppm 

Al/Ca
(mMol/Mol)

MP-10 342648.817 N/A N/A
MP-11 357578.327 1591.860 0.178
MP-12 396504.370 165.661 0.017
MP-13 313047.021 N/A N/A
MP-14 384331.947 N/A N/A
MP-15 357487.581 N/A N/A
MP-16 290491.855 106.879 0.015
MP-17 329805.680 N/A N/A
MP-18 387999.920 N/A N/A
MP-19 348750.500 467.572 0.054
MP-20 286764.750 4507.980 0.629

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Mode of Preservation Suite (Continued) 
 

Preserved Directly in Shale 

Specimen [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

MP-1 164.295 0.337 338.309 0.992
MP-2 N/A N/A 167.558 0.978
MP-3 286.090 0.549 245.962 0.675
MP-4 N/A N/A 139.411 0.419
MP-5 1916.905 4.270 179.928 0.573
MP-6 307.577 0.659 302.695 0.927
MP-7 340.507 0.660 276.961 0.768
MP-8 N/A N/A 185.102 0.485
MP-9 108.322 0.242 238.344 0.760
 
Preserved in Concretions 

Specimen [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

MP-10 3589.299 7.514 153.669 0.460
MP-11 3426.162 6.873 183.978 0.528
MP-12 4207.602 7.612 310.269 0.803
MP-13 610.069 1.398 437.089 1.432
MP-14 115.773 0.216 310.451 0.828
MP-15 3721.623 7.468 186.998 0.536
MP-16 12977.510 32.047 461.101 1.628
MP-17 139.936 0.304 194.419 0.605
MP-18 N/A N/A 194.544 0.514
MP-19 5955.417 12.250 257.469 0.757
MP-20 3092.760 7.737 591.085 2.114

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Mode of Preservation Suite (Continued) 
 

Preserved Directly in Shale 

Specimen [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

MP-1 106.439 0.502 199.801 0.417
MP-2 46.272 0.435 147.254 0.612
MP-3 161.308 0.712 404.205 0.789
MP-4 82.343 0.398 N/A N/A
MP-5 95.359 0.489 285.207 0.647
MP-6 166.258 0.819 3239.452 7.063
MP-7 120.008 0.535 307.190 0.606
MP-8 804.598 3.391 N/A N/A
MP-9 121.945 0.626 N/A N/A
 
Preserved in Concretions 

Specimen [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

MP-10 2308.430 11.117 1762.292 3.757
MP-11 1500.110 6.923 7216.334 14.741
MP-12 1579.443 6.573 3931.915 7.243
MP-13 192.618 1.015 2249.453 5.249
MP-14 114.152 0.490 110.404 0.210
MP-15 744.114 3.435 2575.970 5.263
MP-16 1030.181 5.852 1184.273 2.978
MP-17 95.991 0.480 85.498 0.189
MP-18 264.723 1.126 26.294 0.049
MP-19 2546.293 12.048 6814.483 14.272
MP-20 3351.211 19.285 969.246 2.469

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Mode of Preservation Suite (Continued) 
 

Preserved Directly in Shale 

Specimen [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

MP-1 3902.407 19.449 2409.576 3.153
MP-2 1801.963 17.882 1237.669 3.225
MP-3 3410.736 15.901 3499.546 4.284
MP-4 3940.044 20.128 1823.674 2.446
MP-5 3636.226 19.685 2335.145 3.319
MP-6 3528.756 18.365 2212.174 3.023
MP-7 4009.190 18.890 2029.169 2.510
MP-8 2814.216 12.530 1449.045 1.694
MP-9 2142.852 11.619 1399.016 1.992
 
Preserved in Concretions 

Specimen [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

MP-10 577.991 2.941 1093.216 1.460
MP-11 344.619 1.680 651.877 0.835
MP-12 3103.771 13.648 1838.879 2.123
MP-13 3347.031 18.641 1833.716 2.681
MP-14 4178.667 18.956 2574.603 3.067
MP-15 3266.041 15.929 2584.284 3.309
MP-16 3350.219 20.107 9318.315 14.684
MP-17 3792.947 20.051 2397.838 3.328
MP-18 4238.460 19.046 2111.923 2.492
MP-19 1248.359 6.241 932.789 1.224
MP-20 2728.575 16.589 1290.938 2.061

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Shell Testing Location Suite (Continued) 
 

Shell Taken from Septum: 

Specimen  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

1S 397800.760 N/A N/A
2S 302918.706 586.552 0.077
3S 275462.981 2783.478 0.404
4S 339307.629 1144.141 0.135
5S 293972.437 1158.966 0.158
6S 323656.561 870.411 0.108
7S 353154.550 N/A N/A
8S 379448.012 99.169 0.010
9S 328225.280 224.715 0.027
10S 304005.309 597.682 0.079
 
Shell Taken from Phragmacone Adjacent to Septum: 

Specimen [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

1P 323301.687 353.076 0.044
2P 394523.767 486.131 0.049
3P 13893.955 190.225 0.548
4P 307581.549 1735.389 0.226
5P 289798.190 891.545 0.123
6P 303252.508 645.480 0.085
7P 318913.955 537.746 0.067
8P 310820.113 736.899 0.095
9P 314319.917 231.145 0.029
10P 293918.604 1086.639 0.148

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Shell Testing Location Suite (Continued) 
 

Shell Taken from Septum: 

Specimen  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

1S 337.061 0.608 241.893 0.624
2S 4216.932 9.986 745.807 2.525
3S 14485.545 37.723 756.209 2.815
4S 1402.202 2.964 650.465 1.966
5S 408.654 0.997 458.002 1.598
6S 1445.960 3.205 675.592 2.141
7S 596.196 1.211 272.637 0.792
8S 294.276 0.556 326.919 0.884
9S 702.057 1.534 547.704 1.711
10S 811.700 1.915 536.863 1.811
 
Shell Taken from Phragmacone Adjacent to Septum: 

Specimen [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

1P 5953.316 13.209 689.200 2.186
2P 4679.821 8.509 566.304 1.472
3P 534.425 27.593 196.770 14.525
4P 3701.232 8.632 998.568 3.330
5P 1833.183 4.538 360.167 1.275
6P 1243.161 2.941 658.346 2.226
7P 3108.675 6.993 546.688 1.758
8P 3081.612 7.112 470.134 1.551
9P 913.828 2.086 376.295 1.228
10P 1756.955 4.288 701.014 2.446

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Shell Testing Location Suite (Continued) 
 

Shell Taken from Septum: 

Specimen  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

1S 165.999 0.689 164.926 0.303
2S 1573.935 8.574 5820.233 14.034
3S 3102.620 18.587 5411.270 14.349
4S 4785.934 23.276 3524.525 7.587
5S 1428.219 8.017 113.901 0.283
6S 1602.254 8.169 410.622 0.927
7S 10471.826 48.932 983.656 2.034
8S 465.993 2.027 66.291 0.128
9S 2525.540 12.698 844.126 1.878
10S 2497.084 13.555 398.261 0.957
 
Shell Taken from Phragmacone Adjacent to Septum: 

Specimen [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

1P 1292.838 6.599 3199.795 7.229
2P 3127.006 13.080 6612.912 12.243
3P 216.894 25.761 174.509 9.174
4P 3838.157 20.592 3650.128 8.668
5P 2335.732 13.300 341.210 0.860
6P 5492.704 29.890 571.669 1.377
7P 8059.765 41.705 3192.408 7.312
8P 4881.985 25.919 1311.369 3.082
9P 3011.749 15.812 1636.809 3.804
10P 2041.629 11.463 492.919 1.225

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Shell Testing Location Suite (Continued) 
 

Shell Taken from Septum: 

Specimen  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

1S 3690.897 16.176 2975.639 3.424
2S 628.338 3.616 523.399 0.791
3S 670.099 4.241 512.388 0.851
4S 3067.143 15.760 3425.384 4.621
5S 3264.908 19.363 1964.570 3.059
6S 5959.577 32.103 2099.138 2.969
7S 2431.042 12.002 1535.904 1.991
8S 4064.048 18.673 2228.468 2.688
9S 6641.447 35.278 2721.898 3.796
10S 7111.696 40.786 1783.532 2.686
 
Shell Taken from Phragmacone Adjacent to Septum: 

Specimen [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

1P 3019.709 16.284 11566.121 16.376
2P 920.300 4.067 931.567 1.081
3P 284.505 35.701 604.503 19.917
4P 3295.050 18.677 1940.755 2.888
5P 3517.415 21.161 1997.610 3.155
6P 5232.188 30.081 2606.202 3.934
7P 7940.190 43.408 1531.817 2.199
8P 2746.384 15.405 2707.685 3.988
9P 2187.071 12.131 2827.012 4.117
10P 5139.491 30.487 2212.709 3.446

 
*weight percents normalized to 40% Ca 
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Kremmling, Colorado, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

SC-1 349374.665 N/A N/A
SC-2 210798.358 428.866 0.081
SC-3 307749.064 N/A N/A
SC-4 324906.964 N/A N/A
SC-5 388851.043 N/A N/A
SC-6 336077.139 231.945 0.028
SC-7 233388.744 2414.911 0.414
SC-8 256015.593 284.786 0.044
SC-9 296636.139 1137.917 0.153
SC-10 346784.033 N/A N/A
SC-11 255766.478 1426.706 0.223
SC-12 391821.330 N/A N/A
SC-13 309157.385 N/A N/A
SC-14 196443.855 2467.386 0.502
SC-15 327370.577 314.596 0.038
SC-16 179071.433 1857.479 0.415
SC-17 120771.796 2009.081 0.665
SC-18 272407.339 1657.166 0.243
SC-19 245129.445 2012.211 0.328
SC-20 338296.486 N/A N/A
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 
 

Game Ranch, South Dakota, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

SC-21 295002.574 779.089 0.106
SC-22 380815.313 N/A N/A
SC-23 377794.156 N/A N/A
SC-24 285378.708 493.717 0.069
SC-25 375552.472 N/A N/A
SC-26 350602.189 88.597 0.010
SC-27 286893.057 N/A N/A
SC-28 348429.480 N/A N/A
SC-29 307341.279 1147.963 0.149
SC-30 368493.489 N/A N/A
SC-31 346095.016 N/A N/A
SC-32 379592.814 N/A N/A
SC-33 346144.010 N/A N/A
SC-34 303721.408 234.436 0.031
SC-35 350303.529 N/A N/A
SC-36 351040.497 N/A N/A
SC-37 354576.098 229.018 0.026
SC-38 338869.682 176.870 0.021
SC-39 370022.686 N/A N/A
SC-40 333044.179 268.238 0.032
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

SC-41 383656.252 N/A N/A
SC-42 314802.951 120.130 0.015
SC-43 336563.754 272.687 0.032
SC-44 327926.765 431.806 0.053
SC-45 344621.864 183.885 0.021
SC-46 367743.402 N/A N/A
SC-47 368017.078 N/A N/A
SC-48 382577.145 N/A N/A
SC-49 349892.589 N/A N/A
SC-50 384139.477 N/A N/A
SC-51 346954.297 247.461 0.029
SC-52 374739.380 N/A N/A
SC-53 292900.718 921.493 0.126
SC-54 354750.549 440.163 0.050
SC-55 369232.955 N/A N/A
SC-56 322742.995 928.338 0.115
SC-57 306012.390 1902.768 0.249
SC-58 363062.012 1239.145 0.137
SC-59 592092.486 1893.634 0.128
SC-60 310263.392 1487.702 0.192
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Kremmling, Colorado, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

SC-1 6736.994 13.833 119.007 0.349
SC-2 3903.263 13.283 446.898 2.174
SC-3 2759.682 6.433 176.120 0.587
SC-4 9989.496 22.056 181.576 0.573
SC-5 4047.950 7.468 163.946 0.432
SC-6 4666.698 9.961 352.146 1.075
SC-7 5025.051 15.445 1215.893 5.343
SC-8 4336.310 12.150 264.814 1.061
SC-9 7274.074 17.591 807.516 2.792
SC-10 11367.810 23.515 174.042 0.515
SC-11 4837.432 13.568 838.281 3.361
SC-12 4392.651 8.042 226.923 0.594
SC-13 4055.587 9.410 216.167 0.717
SC-14 5199.664 18.988 1221.966 6.380
SC-15 5293.590 11.600 398.537 1.249
SC-16 3264.076 13.076 983.965 5.635
SC-17 3826.494 22.728 1014.966 8.619
SC-18 5829.126 15.350 957.701 3.606
SC-19 1465.171 4.288 502.938 2.104
SC-20 182.013 0.386 180.520 0.547
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APPENDIX B (CONTINUED) 

 
 

Shell Color Suite (Continued) 
 

Game Ranch, South Dakota, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

SC-21 11119.928 27.040 1085.274 3.773
SC-22 377.728 0.712 288.124 0.776
SC-23 67.176 0.128 281.042 0.763
SC-24 11255.772 28.293 774.921 2.785
SC-25 1138.393 2.174 301.653 0.824
SC-26 951.777 1.947 549.251 1.607
SC-27 54990.386 137.499 358.482 1.281
SC-28 429.027 0.883 430.792 1.268
SC-29 13124.393 30.633 1283.895 4.284
SC-30 136.915 0.267 295.726 0.823
SC-31 399.480 0.828 323.004 0.957
SC-32 348.335 0.658 480.928 1.299
SC-33 396.158 0.821 545.087 1.615
SC-34 8802.022 20.789 569.099 1.922
SC-35 269.467 0.552 387.858 1.136
SC-36 61.635 0.126 330.524 0.966
SC-37 2319.393 4.692 532.004 1.539
SC-38 1191.225 2.522 420.055 1.271
SC-39 994.297 1.928 413.204 1.145
SC-40 473.524 1.020 525.450 1.618
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Trask Ranch, South Dakota, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

SC-41 878.332 1.642 343.065 0.917
SC-42 560.224 1.277 510.236 1.662
SC-43 1040.026 2.217 348.456 1.062
SC-44 3153.780 6.899 519.968 1.626
SC-45 907.823 1.890 416.701 1.240
SC-46 375.105 0.732 352.882 0.984
SC-47 350.843 0.684 383.760 1.069
SC-48 250.910 0.470 293.720 0.787
SC-49 484.413 0.993 484.836 1.421
SC-50 154.620 0.289 350.884 0.937
SC-51 621.354 1.285 559.584 1.654
SC-52 267.156 0.511 395.679 1.083
SC-53 1651.748 4.045 1057.093 3.701
SC-54 5099.743 10.312 624.870 1.806
SC-55 144.526 0.281 333.893 0.927
SC-56 6788.838 15.089 833.530 2.649
SC-57 2378.588 5.576 902.531 3.025
SC-58 1655.949 3.272 1000.435 2.826
SC-59 10936.007 13.250 1526.556 2.644
SC-60 5306.503 12.269 820.833 2.713
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Kremmling, Colorado, samples 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

SC-1 1972.721 9.318 2945.413 6.158
SC-2 2026.530 15.864 3988.699 13.821
SC-3 1270.365 6.812 6230.504 14.788
SC-4 2581.117 13.110 4049.314 9.103
SC-5 1672.626 7.098 5448.521 10.235
SC-6 1582.790 7.772 7306.718 15.880
SC-7 2956.605 20.905 2494.407 7.807
SC-8 2453.366 15.814 4032.559 11.505
SC-9 2325.221 12.935 4855.124 11.955
SC-10 2141.687 10.191 4314.775 9.088
SC-11 1993.891 12.865 5579.722 15.935
SC-12 1911.589 8.051 8319.078 15.508
SC-13 1383.786 7.386 6944.814 16.408
SC-14 2935.301 24.658 3169.419 11.785
SC-15 1797.564 9.061 6779.449 15.126
SC-16 4074.614 37.549 1342.895 5.478
SC-17 2616.606 35.753 2074.170 12.544
SC-18 2865.714 17.360 5512.545 14.781
SC-19 2396.181 16.131 1418.026 4.225
SC-20 2667.130 13.010 526.068 1.136
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Game Ranch, South Dakota, samples 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

SC-21 1326.876 7.422 2942.568 7.286
SC-22 126.981 0.550 180.025 0.345
SC-23 161.861 0.707 78.945 0.153
SC-24 5449.457 31.512 3517.102 9.002
SC-25 183.582 0.807 2635.794 5.126
SC-26 994.923 4.683 1260.325 2.626
SC-27 2497.682 14.367 5775.334 14.704
SC-28 298.577 1.414 347.127 0.728
SC-29 1190.107 6.390 1739.087 4.133
SC-30 84.588 0.379 302.604 0.600
SC-31 98.034 0.467 152.352 0.322
SC-32 309.860 1.347 4919.315 9.466
SC-33 270.770 1.291 3134.235 6.614
SC-34 11160.331 60.637 942.549 2.267
SC-35 276.651 1.303 45.970 0.096
SC-36 452.250 2.126 73.290 0.152
SC-37 1860.869 8.661 1747.161 3.599
SC-38 1306.539 6.362 783.941 1.690
SC-39 648.516 2.892 329.873 0.651
SC-40 216.444 1.072 N/A N/A
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APPENDIX B (CONTINUED) 
 
 

Shell Color Suite (Continued) 
 

Trask Ranch, South Dakota, samples  

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

SC-41 575.944 2.477 2145.707 4.085
SC-42 2240.993 11.747 475.724 1.104
SC-43 2782.707 13.644 972.733 2.111
SC-44 6031.295 30.351 2779.305 6.191
SC-45 1216.740 5.826 974.129 2.065
SC-46 1021.474 4.584 460.717 0.915
SC-47 1458.854 6.542 582.723 1.157
SC-48 348.164 1.502 232.611 0.444
SC-49 904.993 4.268 455.948 0.952
SC-50 394.804 1.696 130.099 0.247
SC-51 321.873 1.531 N/A N/A
SC-52 804.157 3.541 244.546 0.477
SC-53 3537.012 19.928 759.422 1.894
SC-54 12247.372 56.972 3563.514 7.337
SC-55 628.403 2.809 246.420 0.487
SC-56 5729.899 29.297 5775.688 13.071
SC-57 6623.041 35.715 1543.848 3.685
SC-58 2741.765 12.462 1749.631 3.520
SC-59 13388.800 37.316 7764.048 9.578
SC-60 2694.561 14.332 4623.775 10.885
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Shell Color Suite (Continued) 
 

Kremmling, Colorado, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

SC-1 706.544 3.526 1493.954 1.957
SC-2 3390.397 28.041 384.189 0.834
SC-3 306.451 1.736 544.015 0.809
SC-4 374.077 2.007 754.795 1.063
SC-5 1734.972 7.779 1422.817 1.675
SC-6 345.030 1.790 576.458 0.785
SC-7 4594.785 34.324 369.622 0.725
SC-8 369.586 2.517 467.831 0.836
SC-9 420.889 2.474 657.507 1.015
SC-10 254.623 1.280 656.443 0.867
SC-11 1212.344 8.264 456.583 0.817
SC-12 448.175 1.994 819.504 0.957
SC-13 285.333 1.609 511.231 0.757
SC-14 2246.541 19.938 384.357 0.896
SC-15 358.141 1.907 600.895 0.840
SC-16 3531.446 34.383 529.702 1.354
SC-17 809.730 11.689 221.732 0.840
SC-18 803.904 5.145 554.923 0.933
SC-19 1735.618 12.345 982.662 1.835
SC-20 2457.735 12.666 1240.698 1.679
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APPENDIX B (CONTINUED) 

 
 

Shell Color Suite (Continued) 
 

Game Ranch, South Dakota, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

SC-21 3084.444 18.229 2567.832 3.985
SC-22 3718.036 17.022 3027.965 3.640
SC-23 3937.584 18.172 3002.582 3.638
SC-24 2470.400 15.093 2518.660 4.040
SC-25 3165.385 14.695 3544.326 4.320
SC-26 3828.344 19.038 2000.966 2.613
SC-27 3498.948 21.263 2083.027 3.324
SC-28 4338.181 21.707 1937.749 2.546
SC-29 3608.656 20.471 2389.502 3.559
SC-30 4533.102 21.448 2597.124 3.226
SC-31 4128.452 20.797 1863.390 2.465
SC-32 3924.948 18.027 2324.538 2.803
SC-33 3546.025 17.861 3980.821 5.264
SC-34 3646.641 20.933 2623.239 3.954
SC-35 4065.437 20.234 1799.189 2.351
SC-36 4150.104 20.612 3250.576 4.239
SC-37 2970.007 14.604 1424.169 1.839
SC-38 3362.519 17.300 1336.423 1.805
SC-39 2839.399 13.379 1493.068 1.847
SC-40 2508.917 13.134 1473.977 2.026
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Shell Color Suite (Continued) 
 

Trask Ranch, South Dakota, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

SC-41 3504.255 15.925 3265.464 3.896
SC-42 4861.709 26.926 4260.665 6.196
SC-43 8975.105 46.493 2648.529 3.602
SC-44 1760.631 9.361 2212.598 3.089
SC-45 4285.288 21.680 2388.933 3.173
SC-46 3941.349 18.686 1908.415 2.376
SC-47 5417.316 25.664 2154.871 2.680
SC-48 4112.303 18.741 2179.679 2.608
SC-49 3601.184 17.944 2286.626 2.992
SC-50 3804.437 17.267 2615.512 3.117
SC-51 3864.684 19.420 2577.314 3.400
SC-52 3568.098 16.601 3130.853 3.824
SC-53 4957.611 29.510 1734.128 2.710
SC-54 2300.133 11.304 592.935 0.765
SC-55 3944.085 18.624 2813.711 3.488
SC-56 2382.854 12.872 1656.773 2.350
SC-57 8502.651 48.443 1671.584 2.501
SC-58 2169.675 10.419 7309.292 9.216
SC-59 9058.639 26.674 3659.690 2.829
SC-60 2842.429 15.973 1575.591 2.325
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Cementation Suite 
 
 

Kremmling, Colorado, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

CEM-1S 255432.82 771.18 4.484
CEM-1Ce 303879.50 N/A N/A
CEM-1Co 220810.48 1711.05 11.509
CEM-2S 358874.98 276.10 1.143
CEM-2Co 251093.16 1847.62 10.928
CEM-3S 265065.62 727.46 4.076
CEM-3Ce 475948.97 N/A N/A
CEM-3Co 179162.98 1766.72 14.645
CEM-4S 625305.54 2580.28 6.129
CEM-4Co 211100.68 4971.60 34.977
CEM-5S 350061.94 N/A N/A
CEM-5Ce 278865.48 N/A N/A
CEM-5Co 222344.01 1680.37 11.224
CEM-6S 52036.78 296.93 8.475
CEM-6Ce 339589.59 N/A N/A
CEM-6Co 190857.76 2513.65 19.560
CEM-7S 339329.61 534.68 2.340
CEM-7Ce 372392.56 N/A N/A
CEM-7Co 324670.05 1038.23 4.749
CEM-8S 335406.50 N/A N/A
CEM-8Ce 341787.32 N/A N/A
CEM-8Co 227985.95 2069.69 13.483
CEM-9S 378031.27 289.17 1.136
CEM-9Ce1 356061.91 N/A N/A
CEM-9Ce2 266343.28 631.94 3.524
CEM-9Co 362867.17 122.50 0.501
CEM-10S 361903.30 N/A N/A
CEM-10Ce1 388303.55 N/A N/A
CEM-10Ce2 379821.80 N/A N/A
CEM-10Co 299197.88 2180.76 10.825
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Game Ranch, South Dakota, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

CEM-11S 261172.41 1819.58 10.347
CEM-11Co 90588.34 3288.19 53.909
CEM-11Cr1 237395.84 394.69 2.469
CEM-11Cr2 226000.39 100.90 0.663
CEM-12S 388705.07 N/A N/A
CEM-12Co 245278.19 1463.17 8.860
CEM-12Cr1 225573.17 615.60 4.053
CEM-12Cr2 169693.24 111.13 0.973
CEM-13S 380419.54 106.25 0.415
CEM-13Co 237231.41 2053.75 12.858
CEM-13Cr 236948.73 286.25 1.794
CEM-14S 290700.00 840.43 4.294
CEM-14Ce1 103306.32 221.48 3.184
CEM-14Ce2 17070.41 135.15 11.759
CEM-14Cr1 25103.31 876.95 51.883
CEM-14Cr2 40110.25 1261.28 46.702
CEM-15S 391032.82 N/A N/A
CEM-15Co1 268303.24 2156.22 11.936
CEM-15Co2 92163.79 3094.03 49.859
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

CEM-16S 372319.20 308.46 1.230
CEM-16Ce1 348010.29 N/A N/A
CEM-16Ce2 367833.26 259.47 1.048
CEM-16Co 300039.42 2645.31 13.094
CEM-17S1 284559.41 586.30 3.060
CEM-17S2 349902.11 359.28 1.525
CEM-17Ce1 317855.38 568.15 2.655
CEM-17Ce2 381884.20 102.89 0.400
CEM-17Co 298747.21 2399.52 11.929
CEM-18S 393776.54 N/A N/A
CEM-18Ce 399144.37 259.38 0.965
CEM-18Co 260098.66 6439.27 36.769
CEM-19S1 317955.32 226.61 1.058
CEM-19S2 351780.35 371.10 1.567
CEM-19Ce1 521438.36 456.92 1.301
CEM-19Ce2 323274.26 101.27 0.465
CEM-19Co 302066.99 2586.47 12.717
CEM-20S 382850.85 654.04 2.537
CEM-20Co 263178.45 6559.99 37.020
CEM-21S 293049.19 1095.25 5.551
CEM-21Ce1 317672.23 N/A N/A
CEM-21Co 274184.03 2495.04 13.515
CEM-22S1 281796.30 1014.27 5.346
CEM-22S2 336458.65 1515.34 6.689
CEM-22Ce1 280626.69 1540.34 8.152
CEM-22Ce2 370888.45 N/A N/A
CEM-22Co 264976.38 3974.43 22.277
CEM-23S 277337.00 2329.73 12.476
CEM-23Ce1 394020.73 279.22 1.052
CEM-23Ce2 379758.14 N/A N/A
CEM-23Co 292270.67 2905.92 14.767
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples (continued) 

Sample  [Ca] 
ppm 

[Al] 
ppm 

Al/Ca 
(mMol/Mol) 

CEM-24S 272964.37 426.63 2.321
CEM-24Ce 374382.05 186.00 0.738
CEM-24Co 267054.50 3016.73 16.777
CEM-25S 404485.34 N/A N/A
CEM-25Ce 370380.16 3651.09 14.640
CEM-25Co 288819.66 3618.82 18.609
CEM-26S 370368.96 823.22 3.301
CEM-26Ce 294838.84 3018.75 15.206
CEM-26Co 370133.19 436.05 1.750
CEM-27S 313509.45 1406.78 6.664
CEM-27Ce 360938.20 N/A N/A
CEM-27Co 293772.24 2021.58 10.220
CEM-28S 367916.87 330.63 1.335
CEM-28Ce 227586.99 141.91 0.926
CEM-28Co 227852.24 1858.50 12.114
CEM-29S 333660.53 970.36 4.319
CEM-29Co 289763.65 2262.83 11.598
CEM-29Cr 338142.89 591.50 2.598
CEM-30S 342594.96 1264.37 5.481
CEM-30Ce1 274004.45 N/A N/A
CEM-30Ce2 279716.77 1045.67 5.552
CEM-30Co 278435.07 3013.68 16.075
CEM-31S 349977.93 N/A N/A
CEM-31Ce 350808.53 N/A N/A
CEM-32S 368450.73 N/A N/A
CEM-32Ce 335529.56 N/A N/A
CEM-33S 333255.24 1848.23 8.237
CEM-33Co 252382.59 2369.31 13.943
CEM-34S 241088.47 N/A N/A
CEM-34Co 297050.08 2770.89 13.854
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Kremmling, Colorado, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

CEM-1S 4952.44 13.908 582.62 0.091
CEM-1Ce 3752.21 8.858 222.65 0.029
CEM-1Co 4490.18 14.587 1192.48 0.216
CEM-2S 13500.74 26.987 270.92 0.030
CEM-2Co 10301.29 29.430 1270.91 0.202
CEM-3S 2344.41 6.345 372.91 0.056
CEM-3Ce 9026.85 13.605 224.80 0.019
CEM-3Co 5168.33 20.694 1211.73 0.271
CEM-4S 6919.87 7.938 315.07 0.020
CEM-4Co 35258.23 119.813 1974.82 0.374
CEM-5S 6224.77 12.756 256.35 0.029
CEM-5Ce 5358.11 13.783 184.99 0.027
CEM-5Co 5655.22 18.246 1160.82 0.209
CEM-6S 1608.08 22.168 283.20 0.218
CEM-6Ce 11414.49 24.112 292.68 0.034
CEM-6Co 9809.57 36.870 1131.19 0.237
CEM-7S 3839.88 8.118 539.74 0.064
CEM-7Ce 4255.77 8.198 260.99 0.028
CEM-7Co 7070.92 15.623 749.87 0.092
CEM-8S 4197.52 8.977 273.64 0.033
CEM-8Ce 4372.52 9.177 188.24 0.022
CEM-8Co 4748.04 14.940 1315.89 0.231
CEM-9S 3942.20 7.481 320.97 0.034
CEM-9Ce1 1483.53 2.989 224.33 0.025
CEM-9Ce2 2690.76 7.247 521.19 0.078
CEM-9Co 1401.35 2.770 276.86 0.031
CEM-10S 6058.57 12.009 280.20 0.031
CEM-10Ce1 9109.87 16.830 234.90 0.024
CEM-10Ce2 1074.91 2.030 241.38 0.025
CEM-10Co 13218.88 31.693 1063.35 0.142
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Game Ranch, South Dakota, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

CEM-11S 10183.93 27.972 1442.34 0.221
CEM-11Co 22768.73 180.301 2461.97 1.087
CEM-11Cr1 4073.17 12.308 423.42 0.071
CEM-11Cr2 1644.17 5.219 346.32 0.061
CEM-12S 773.39 1.427 322.47 0.033
CEM-12Co 28657.81 83.814 1541.98 0.251
CEM-12Cr1 15255.76 48.515 625.00 0.111
CEM-12Cr2 1516.00 6.409 308.19 0.073
CEM-13S 553.87 1.044 479.80 0.050
CEM-13Co 8455.51 25.568 2086.71 0.352
CEM-13Cr 851.55 2.578 385.02 0.065
CEM-14S 18157.46 44.807 853.81 0.117
CEM-14Ce1 251512.43 1746.486 437.05 0.169
CEM-14Ce2 5458.01 229.363 293.87 0.689
CEM-14Cr1 299573.59 8560.619 916.13 1.460
CEM-14Cr2 36920.99 660.314 1493.93 1.490
CEM-15S 1062.48 1.949 398.01 0.041
CEM-15Co1 11014.53 29.449 1498.51 0.223
CEM-15Co2 19198.16 149.428 2612.06 1.134
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

CEM-16S 1249.06 2.407 435.43 0.047
CEM-16Ce1 2447.17 5.044 345.91 0.040
CEM-16Ce2 5213.36 10.167 428.40 0.047
CEM-16Co 4763.16 11.388 1275.58 0.170
CEM-17S1 1483.17 3.739 451.16 0.063
CEM-17S2 3249.96 6.663 401.03 0.046
CEM-17Ce1 4655.32 10.506 408.06 0.051
CEM-17Ce2 1818.36 3.416 321.83 0.034
CEM-17Co 4593.61 11.030 1259.95 0.169
CEM-18S 565.11 1.029 285.96 0.029
CEM-18Ce 4260.18 7.657 500.78 0.050
CEM-18Co 6202.89 17.108 1431.01 0.220
CEM-19S1 1015.03 2.290 393.22 0.049
CEM-19S2 974.03 1.986 336.07 0.038
CEM-19Ce1 10597.98 14.580 885.75 0.068
CEM-19Ce2 3362.32 7.461 733.11 0.091
CEM-19Co 4800.10 11.399 1326.01 0.176
CEM-20S 500.36 0.938 552.24 0.058
CEM-20Co 7025.35 19.149 1602.90 0.244
CEM-21S 1508.37 3.692 475.97 0.065
CEM-21Ce1 47.19 0.107 277.22 0.035
CEM-21Co 4781.54 12.510 1379.76 0.201
CEM-22S1 2047.93 5.213 815.19 0.116
CEM-22S2 1250.87 2.667 744.25 0.088
CEM-22Ce1 3883.43 9.927 892.39 0.127
CEM-22Ce2 1072.54 2.074 213.98 0.023
CEM-22Co 7773.58 21.045 2059.93 0.311
CEM-23S 4351.04 11.254 1102.74 0.159
CEM-23Ce1 4112.30 7.487 399.04 0.041
CEM-23Ce2 5012.99 9.469 211.90 0.022
CEM-23Co 6507.38 15.972 1712.64 0.234

 



www.manaraa.com

 

183 

APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples (Continued) 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

CEM-24S 2006.90 5.274 557.65 0.082
CEM-24Ce 1309.88 2.510 323.60 0.035
CEM-24Co 5344.90 14.357 1596.19 0.239
CEM-25S 103.24 0.183 283.57 0.028
CEM-25Ce 1665.79 3.226 301.08 0.033
CEM-25Co 5375.24 13.351 1241.12 0.172
CEM-26S 2497.39 4.837 448.43 0.048
CEM-26Ce 5861.85 14.262 1416.74 0.192
CEM-26Co 6339.45 12.286 468.31 0.051
CEM-27S 5588.00 12.786 1044.63 0.133
CEM-27Ce 2114.49 4.202 191.74 0.021
CEM-27Co 4139.04 10.107 1259.02 0.171
CEM-28S 1116.53 2.177 461.56 0.050
CEM-28Ce 2327.46 7.336 312.40 0.055
CEM-28Co 4255.89 13.399 1245.74 0.219
CEM-29S 737.26 1.585 382.61 0.046
CEM-29Co 5663.25 14.020 1304.50 0.180
CEM-29Cr 3382.42 7.176 562.29 0.067
CEM-30S 2736.93 5.731 805.32 0.094
CEM-30Ce1 1276.86 3.343 71.29 0.010
CEM-30Ce2 6931.16 17.775 464.26 0.066
CEM-30Co 4968.02 12.799 1256.27 0.180
CEM-31S 1661.88 3.406 956.27 0.109
CEM-31Ce 4575.42 9.356 803.24 0.092
CEM-32S 4423.38 8.612 185.87 0.020
CEM-32Ce 11133.99 23.804 59.69 0.007
CEM-33S 1501.39 3.232 343.47 0.041
CEM-33Co 5290.24 15.037 1413.63 0.224
CEM-34S N/A N/A 287.84 0.048
CEM-34Co 4690.15 11.326 1352.09 0.182
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Kremmling, Colorado, samples 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

CEM-1S 1925.60 12.440 4209.74 12.038
CEM-1Ce 2204.28 11.970 2338.66 5.621
CEM-1Co 3500.28 26.159 3284.83 10.866
CEM-2S 2642.51 12.151 4333.35 8.820
CEM-2Co 7586.01 49.856 9212.94 26.800
CEM-3S 1086.86 6.766 5189.71 14.301
CEM-3Ce 1766.71 6.126 2497.75 3.833
CEM-3Co 2208.73 20.344 3135.77 12.784
CEM-4S 2657.12 7.012 10423.82 12.176
CEM-4Co 3684.14 28.799 3798.09 13.142
CEM-5S 2258.40 10.646 5992.27 12.503
CEM-5Ce 1573.58 9.312 2454.61 6.429
CEM-5Co 3735.79 27.727 3675.51 12.074
CEM-6S 577.62 18.318 246.42 3.459
CEM-6Ce 3695.40 17.957 647.83 1.393
CEM-6Co 3180.86 27.503 3887.91 14.879
CEM-7S 2411.34 11.727 4917.09 10.584
CEM-7Ce 3709.39 16.438 2710.49 5.316
CEM-7Co 3036.54 15.434 5409.66 12.170
CEM-8S 1713.13 8.429 7196.78 15.673
CEM-8Ce 2476.26 11.956 2338.92 4.998
CEM-8Co 4684.42 33.907 3881.35 12.435
CEM-9S 2789.99 12.179 2781.31 5.374
CEM-9Ce1 503.97 2.336 2059.01 4.224
CEM-9Ce2 970.86 6.015 929.51 2.549
CEM-9Co 619.93 2.819 2212.32 4.453
CEM-10S 1909.15 8.705 7771.08 15.684
CEM-10Ce1 1700.05 7.225 2001.87 3.766
CEM-10Ce2 448.86 1.950 3297.99 6.342
CEM-10Co 2928.45 16.152 5831.75 14.237
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Game Ranch, South Dakota, samples 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

CEM-11S 11234.98 70.988 4048.30 11.322
CEM-11Co 4141.76 75.449 5173.71 41.716
CEM-11Cr1 436.46 3.034 1856.76 5.713
CEM-11Cr2 185.38 1.354 348.50 1.126
CEM-12S 265.57 1.127 264.06 0.496
CEM-12Co 6878.74 46.279 7669.42 22.839
CEM-12Cr1 1208.51 8.841 2079.96 6.735
CEM-12Cr2 161.56 1.571 1385.51 5.964
CEM-13S 339.54 1.473 484.53 0.930
CEM-13Co 5107.06 35.525 4783.73 14.729
CEM-13Cr 311.36 2.168 903.60 2.785
CEM-14S 2292.85 13.016 1515.90 3.809
CEM-14Ce1 15911.84 254.174 13506.79 95.499
CEM-14Ce2 557.98 53.940 372.86 15.954
CEM-14Cr1 13037.18 857.020 23881.43 694.867
CEM-14Cr2 2910.27 119.734 16724.11 304.551
CEM-15S 188.58 0.796 756.39 1.413
CEM-15Co1 8167.99 50.237 3238.25 8.816
CEM-15Co2 4782.25 85.627 10352.44 82.045
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

CEM-16S 2746.05 12.171 783.25 1.537
CEM-16Ce1 925.28 4.388 1522.48 3.195
CEM-16Ce2 3115.91 13.979 2982.59 5.923
CEM-16Co 13260.39 72.932 5819.61 14.167
CEM-17S1 3621.42 21.001 1411.27 3.622
CEM-17S2 8289.60 39.095 2397.31 5.004
CEM-17Ce1 3066.32 15.919 2473.52 5.684
CEM-17Ce2 1846.18 7.978 1344.48 2.572
CEM-17Co 15531.84 85.794 3813.52 9.324
CEM-18S 926.51 3.883 527.06 0.978
CEM-18Ce 4185.72 17.305 2549.51 4.666
CEM-18Co 16163.31 102.549 3596.46 10.100
CEM-19S1 2394.59 12.428 1539.06 3.536
CEM-19S2 4131.37 19.380 1493.92 3.102
CEM-19Ce1 3203.42 10.138 9155.12 12.824
CEM-19Ce2 1099.64 5.613 2387.06 5.393
CEM-19Co 12223.09 66.775 13683.93 33.089
CEM-20S 2263.66 9.757 425.34 0.811
CEM-20Co 15983.06 100.218 2752.25 7.639
CEM-21S 5109.22 28.771 1101.75 2.746
CEM-21Ce1 12088.74 62.797 1371.51 3.153
CEM-21Co 12978.97 78.115 2763.75 7.363
CEM-22S1 6911.16 40.472 794.24 2.059
CEM-22S2 6727.02 32.994 691.14 1.500
CEM-22Ce1 7815.29 45.957 1728.23 4.498
CEM-22Ce2 9454.39 42.066 1911.97 3.765
CEM-22Co 13359.77 83.201 3337.65 9.200
CEM-23S 4629.41 27.546 2878.12 7.580
CEM-23Ce1 2241.49 9.388 5662.31 10.497
CEM-23Ce2 654.48 2.844 8617.82 16.575
CEM-23Co 14039.63 79.270 3287.83 8.217

 



www.manaraa.com

 

187 

APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples (continued) 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

CEM-24S 5749.52 34.759 1635.41 4.376
CEM-24Ce 10506.80 46.312 1647.69 3.215
CEM-24Co 15756.35 97.363 4240.37 11.598
CEM-25S 597.62 2.438 225.38 0.407
CEM-25Ce 18500.89 82.430 3719.73 7.336
CEM-25Co 12874.94 73.563 3473.57 8.785
CEM-26S 4046.24 18.028 3240.42 6.391
CEM-26Ce 15324.63 85.772 6730.28 16.673
CEM-26Co 2889.94 12.885 3591.80 7.088
CEM-27S 7527.14 39.620 3907.32 9.103
CEM-27Ce 13019.12 59.523 7352.15 14.878
CEM-27Co 17161.91 96.404 3598.44 8.947
CEM-28S 2813.35 12.619 523.58 1.039
CEM-28Ce 7824.72 56.736 1484.89 4.766
CEM-28Co 13351.52 96.698 2170.49 6.958
CEM-29S 1115.73 5.518 55.99 0.123
CEM-29Co 13707.01 78.062 6269.72 15.804
CEM-29Cr 1873.37 9.142 3474.58 7.505
CEM-30S 4141.72 19.950 1576.25 3.361
CEM-30Ce1 13108.56 78.947 2087.25 5.564
CEM-30Ce2 2959.39 17.459 6204.11 16.201
CEM-30Co 16865.85 99.959 3175.60 8.331
CEM-31S 1302.99 6.144 2656.91 5.545
CEM-31Ce 798.18 3.755 7422.87 15.455
CEM-32S 2185.38 9.788 8619.19 17.087
CEM-32Ce 1927.36 9.479 20595.20 44.834
CEM-33S 3068.71 15.196 594.38 1.303
CEM-33Co 11965.39 78.236 3103.77 8.983
CEM-34S 231.95 1.588 32.20 0.098
CEM-34Co 19755.00 109.745 2059.04 5.063
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Cementation Suite 
 

Kremmling, Colorado, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

CEM-1S 608.14 4.151 446.82 0.801
CEM-1Ce 388.22 2.227 304.26 0.458
CEM-1Co 608.65 4.806 339.70 0.704
CEM-2S 546.98 2.657 647.58 0.826
CEM-2Co 1713.64 11.899 1028.78 1.876
CEM-3S 696.95 4.584 546.90 0.944
CEM-3Ce 481.71 1.765 624.18 0.600
CEM-3Co 654.92 6.373 202.35 0.517
CEM-4S 655.23 1.827 1325.49 0.970
CEM-4Co 929.55 7.677 317.10 0.688
CEM-5S 492.22 2.452 725.64 0.949
CEM-5Ce 533.66 3.336 94.09 0.154
CEM-5Co 649.28 5.091 409.40 0.843
CEM-6S 416.39 13.951 1171.13 10.302
CEM-6Ce 526.52 2.703 279.10 0.376
CEM-6Co 581.35 5.311 337.13 0.809
CEM-7S 2052.37 10.545 707.50 0.954
CEM-7Ce 683.35 3.199 381.89 0.469
CEM-7Co 567.91 3.050 549.30 0.774
CEM-8S 547.09 2.844 663.57 0.906
CEM-8Ce 398.67 2.034 286.08 0.383
CEM-8Co 606.63 4.639 368.25 0.739
CEM-9S 636.25 2.934 763.94 0.925
CEM-9Ce1 377.19 1.847 356.28 0.458
CEM-9Ce2 512.19 3.353 N/A N/A
CEM-9Co 387.33 1.861 137.54 0.174
CEM-10S 476.94 2.298 663.14 0.839
CEM-10Ce1 427.46 1.919 468.24 0.552
CEM-10Ce2 918.71 4.217 142.32 0.172
CEM-10Co 477.01 2.780 435.87 0.667
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Cementation Suite (Continued) 
 
 

Game Ranch, South Dakota, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

CEM-11S 1699.97 11.348 1123.33 1.969
CEM-11Co 1876.77 36.121 426.30 2.154
CEM-11Cr1 848.81 6.234 1182.29 2.280
CEM-11Cr2 725.21 5.595 1072.97 2.173
CEM-12S 3882.54 17.415 3061.82 3.606
CEM-12Co 1981.10 14.082 919.51 1.716
CEM-12Cr1 959.66 7.417 1077.21 2.186
CEM-12Cr2 501.68 5.154 1059.68 2.859
CEM-13S 4203.02 19.263 2069.59 2.490
CEM-13Co 2242.68 16.482 1530.01 2.952
CEM-13Cr 607.09 4.467 653.35 1.262
CEM-14S 3579.83 21.470 3398.15 5.351
CEM-14Ce1 993.15 16.761 470.24 2.084
CEM-14Ce2 446.20 45.573 3578.30 95.956
CEM-14Cr1 582.63 40.465 13.02 0.237
CEM-14Cr2 896.45 38.966 309.72 3.535
CEM-15S 4865.36 21.693 2384.12 2.791
CEM-15Co1 1218.55 7.918 906.31 1.546
CEM-15Co2 2040.53 38.601 444.73 2.209
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

SrCa 
(mMol/Mol) 

CEM-16S 3658.19 10.436 11408.96 4.498
CEM-16Ce1 160.44 2.481 5896.43 0.211
CEM-16Ce2 243.88 3.432 12967.74 0.304
CEM-16Co 551.83 7.658 29633.70 0.842
CEM-17S1 2332.95 12.648 11950.54 3.753
CEM-17S2 1499.76 9.382 18079.87 1.962
CEM-17Ce1 211.38 18.433 14743.31 0.304
CEM-17Ce2 209.58 7.262 7233.90 0.251
CEM-17Co 577.64 7.265 29420.97 0.885
CEM-18S 4946.09 11.721 9898.06 5.750
CEM-18Ce 291.11 4.985 13187.86 0.334
CEM-18Co 554.10 17.648 37019.87 0.975
CEM-19S1 2561.37 14.381 10752.52 3.688
CEM-19S2 2818.05 10.309 12204.53 3.667
CEM-19Ce1 444.79 3.763 25869.54 0.390
CEM-19Ce2 290.94 9.574 9749.54 0.412
CEM-19Co 638.93 8.170 36674.08 0.968
CEM-20S 3114.51 16.133 11052.71 3.724
CEM-20Co 587.00 7.976 35714.57 1.021
CEM-21S 1591.71 17.893 13889.75 2.486
CEM-21Ce1 712.77 7.870 15931.48 1.027
CEM-21Co 474.55 8.543 26217.09 0.792
CEM-22S1 1949.98 43.450 20555.48 3.168
CEM-22S2 1945.49 28.435 18361.48 2.647
CEM-22Ce1 875.22 45.712 24092.61 1.428
CEM-22Ce2 426.24 4.688 14076.35 0.526
CEM-22Co 442.71 14.503 33152.26 0.765
CEM-23S 1288.43 17.179 19312.15 2.127
CEM-23Ce1 263.68 9.402 15082.80 0.306
CEM-23Ce2 255.65 1.470 15073.05 0.308
CEM-23Co 529.26 7.867 30301.44 0.829
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APPENDIX B (CONTINUED) 
 
 

Cementation Suite (Continued) 
 
 

Trask Ranch, South Dakota, samples (continued) 

Sample [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

SrCa 
(mMol/Mol) 

CEM-24S 3739.38 23.884 1538.88 2.581
CEM-24Ce 1238.99 5.770 1205.27 1.474
CEM-24Co 1914.21 12.497 583.39 1.000
CEM-25S 3408.53 14.692 3061.08 3.464
CEM-25Ce 926.39 4.361 721.52 0.892
CEM-25Co 959.09 5.790 565.92 0.897
CEM-26S 2252.36 10.603 2561.66 3.166
CEM-26Ce 1207.39 7.140 707.12 1.098
CEM-26Co 874.07 4.117 602.84 0.746
CEM-27S 6268.12 34.858 1842.73 2.691
CEM-27Ce 551.09 2.662 452.77 0.574
CEM-27Co 1330.67 7.897 618.02 0.963
CEM-28S 4233.60 20.062 2772.22 3.449
CEM-28Ce 623.57 4.777 283.21 0.570
CEM-28Co 1494.71 11.437 493.74 0.992
CEM-29S 4056.19 21.195 1506.57 2.067
CEM-29Co 1452.21 8.738 582.05 0.920
CEM-29Cr 3006.70 15.503 243.90 0.330
CEM-30S 3000.70 15.271 1346.21 1.799
CEM-30Ce1 682.00 4.340 539.89 0.902
CEM-30Ce2 680.85 4.244 299.99 0.491
CEM-30Co 1085.38 6.796 673.87 1.108
CEM-31S 5300.72 26.406 2090.25 2.734
CEM-31Ce 786.07 3.907 358.32 0.468
CEM-32S 2828.21 13.383 1443.49 1.793
CEM-32Ce 492.66 2.560 417.26 0.569
CEM-33S 4640.90 24.280 2195.65 3.016
CEM-33Co 1453.32 10.040 543.67 0.986
CEM-34S 2081.65 15.054 2043.12 3.879
CEM-34Co 1047.47 6.148 708.97 1.093
CEM-24S 3739.38 23.884 1538.88 2.581
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
 

 
Baculites candidates 

Sample  [Al] 
ppm 

Al/Ca 
(mMol/Mol) 

[Ca] 
ppm 

B2 2.5 365.81 2.063 264065.56
B2 7.5 N/A N/A 321462.40
B2 12.5 N/A N/A 343369.70
B2 17.5 N/A N/A 294905.20
B2 22.5 N/A N/A 335379.87
B2 27.5 N/A N/A 284469.30
B2 32.5 N/A N/A 326394.41
B3 2.5 188.00 0.846 330841.49
B3 7.5 N/A N/A 355309.16
B3 12.5 N/A N/A 369106.63
B4 2.5  N/A N/A 170565.47
B4 7.5  N/A N/A 364469.94
B4 12.5  N/A N/A 305218.85
B4 17.5  N/A N/A 367046.51
B4 22.5  N/A N/A 362235.49
B4 27.5  N/A N/A 344474.10
B4 32.5  N/A N/A 381711.31
B4 37.5  N/A N/A 346901.60
B4 42.5 278.85 0.764 543356.45
B5 2.5  N/A N/A  N/A
B5 7.5  N/A N/A 366027.98
B5 12.5  N/A N/A 763881.69
B5 17.5  N/A N/A 413460.84
B6 12.5 409.97 1.809 337424.10
B6 17.5 125.86 0.598 313332.14
B6 22.5  N/A N/A 330895.94
B6 27.5  N/A N/A 368588.90
B6 32.5  N/A N/A 339138.45
B6 37.5 231.32 1.030 334370.43
B7 2.5 223.58 0.397 838018.58
B7 7.5 N/A N/A  406809.47
B7 12.5 156.61 0.688 339064.25
B7 17.5 N/A N/A  53845.91
B7 22.5 N/A N/A 210883.79
B7 27.5 N/A N/A 478341.92
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Baculites candidates 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

B2 2.5 253.38 0.688 542.61 2.107
B2 7.5 512.75 1.144 427.00 1.362
B2 12.5 285.70 0.597 300.75 0.898
B2 17.5 138.77 0.338 246.24 0.856
B2 22.5 288.98 0.618 397.57 1.216
B2 27.5 467.20 1.178 771.03 2.780
B2 32.5 203.63 0.448 365.25 1.148
B3 2.5 1549.54 3.360 594.00 1.841
B3 7.5  N/A N/A 202.63 0.585
B3 12.5 58.80 0.114 251.90 0.700
B4 2.5 455.94 1.918 277.64 1.669
B4 7.5 198.24 0.390 316.33 0.890
B4 12.5 365.87 0.860 519.55 1.746
B4 17.5 624.25 1.220 422.99 1.182
B4 22.5 456.92 0.905 443.68 1.256
B4 27.5 133.28 0.278 319.08 0.950
B4 32.5 476.06 0.895 204.51 0.549
B4 37.5 100.25 0.207 290.00 0.857
B4 42.5 1329.01 1.755 452.25 0.854
B5 2.5  N/A N/A  N/A N/A
B5 7.5 260.38 0.510 268.07 0.751
B5 12.5 729.59 0.685 514.90 0.691
B5 17.5 493.78 0.857 228.26 0.566
B6 12.5 1864.20 3.963 679.94 2.067
B6 17.5 604.98 1.385 429.89 1.407
B6 22.5 596.92 1.294 340.73 1.056
B6 27.5 458.02 0.891 248.77 0.692
B6 32.5 632.02 1.337 294.57 0.891
B6 37.5 1867.93 4.007 624.41 1.915
B7 2.5 411.079 0.352 571.386 0.699
B7 7.5 112.121 0.198 305.127 0.769
B7 12.5 331.526 0.701 299.098 0.905
B7 17.5 N/A N/A 69.551 1.325
B7 22.5 N/A N/A 138.953 0.676
B7 27.5 203.877 0.306 272.128 0.583

 



www.manaraa.com

 

194 

APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Baculites candidates 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

B2 2.5 1103.28 6.895 121.96 0.337
B2 7.5 692.85 3.557 61.34 0.139
B2 12.5 377.51 1.814 16.95 0.036
B2 17.5 554.67 3.104 26.15 0.065
B2 22.5 769.82 3.788 99.04 0.216
B2 27.5 1166.87 6.769 35.76 0.092
B2 32.5 736.39 3.723 87.52 0.196
B3 2.5 1662.20 8.291 415.16 0.917
B3 7.5 140.79 0.654  N/A N/A
B3 12.5 225.82 1.010  N/A N/A
B4 2.5 696.56 6.739 745.32 3.192
B4 7.5 539.15 2.441 301.33 0.604
B4 12.5 553.86 2.994 696.80 1.668
B4 17.5 1403.97 6.312 1076.20 2.142
B4 22.5 560.25 2.552 365.53 0.737
B4 27.5 403.32 1.932 46.49 0.099
B4 32.5 567.06 2.451 490.47 0.939
B4 37.5 551.40 2.623 123.12 0.259
B4 42.5 874.62 2.656 686.58 0.923
B5 2.5  N/A N/A  N/A N/A
B5 7.5 338.17 1.525 339.01 0.677
B5 12.5 852.53 1.842 772.40 0.739
B5 17.5 325.04 1.297 293.41 0.518
B6 12.5 569.22 2.784 202.87 0.439
B6 17.5 227.85 1.200 33.72 0.079
B6 22.5 192.82 0.962 39.96 0.088
B6 27.5 133.89 0.599 96.75 0.192
B6 32.5 173.27 0.843 106.28 0.229
B6 37.5 309.15 1.526 294.99 0.644
B7 2.5 689.49 1.358 20.46 0.018
B7 7.5  279.84 N/A N/A N/A
B7 12.5 624.12 1.135 N/A N/A
B7 17.5  29.91 N/A N/A N/A
B7 22.5 48.37 3.038 N/A N/A
B7 27.5 300.82 N/A N/A N/A
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Baculites candidates 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

B2 2.5 2745.51 18.127 1250.82 2.168
B2 7.5 3195.37 17.330 1814.69 2.584
B2 12.5 3280.43 16.657 2139.38 2.852
B2 17.5 2489.63 14.719 2248.10 3.490
B2 22.5 2753.32 14.313 2713.46 3.704
B2 27.5 2677.46 16.410 2143.82 3.450
B2 32.5 2803.36 14.975 2455.55 3.444
B3 2.5 3161.26 16.659 2336.08 3.232
B3 7.5 3347.26 16.425 2550.73 3.286
B3 12.5 3356.28 15.853 2458.28 3.049
B4 2.5 1789.78 18.295 1301.99 3.494
B4 7.5 3953.98 18.914 2360.86 2.965
B4 12.5 3451.79 19.717 2824.90 4.237
B4 17.5 4339.64 20.613 2089.54 2.606
B4 22.5 3984.04 19.176 3629.91 4.587
B4 27.5 4034.24 20.418 9932.54 13.199
B4 32.5 4945.77 22.590 2419.72 2.902
B4 37.5 4605.32 23.146 2106.24 2.779
B4 42.5 6871.01 22.047 2930.35 2.469
B5 2.5  N/A N/A  N/A N/A
B5 7.5 2386.76 11.369 4491.82 5.618
B5 12.5 5477.84 12.503 10180.48 6.101
B5 17.5 2857.64 12.050 4980.93 5.515
B6 12.5 3694.64 19.090 1809.70 2.455
B6 17.5 3643.65 20.274 1388.38 2.028
B6 22.5 3936.76 20.743 1843.46 2.550
B6 27.5 4443.74 21.020 1854.99 2.304
B6 32.5 3776.52 19.415 1856.95 2.506
B6 37.5 3968.67 20.694 1911.85 2.617
B7 2.5 9865.91 20.526 5495.74 3.002
B7 7.5 4594.97 19.693 2547.85 2.867
B7 12.5 3876.55 19.933 1946.12 2.627
B7 17.5 870.24 28.178 255.58 2.173
B7 22.5 2287.59 18.913 1297.76 2.817
B7 27.5 9865.91 21.350 5495.74 2.825
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Hoploscaphites candidates 

Sample  [Al] 
ppm 

Al/Ca 
(mMol/Mol) 

[Ca] 
ppm 

S1 2.5 267.506 1.921 207305.573
S1 7.5 221.982 0.800 413260.421
S1 12.5 463.827 1.842 374873.236
S1 17.5 181.901 0.670 404235.535
S1 32.5 1233.915 4.842 379420.193
S1 37.5 845.684 2.757 456738.989
S1 42.5 335.825 1.441 346888.808
S1 47.5 302.080 1.447 310867.078
S1 62.5 783.004 3.873 300981.475
S1 67.5 1312.810 4.583 426500.180
S2 2.5  N/A N/A 363074.242
S2 7.5 501.274 2.114 353040.889
S2 12.5 285.278 1.234 344306.458
S2 17.5 219.309 1.132 288390.323
S2 22.5 140.032 0.560 372052.545
S2 27.5 352.531 1.426 368066.327

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

S1 2.5 1037.694 3.591 673.166 3.330
S1 7.5 991.069 1.720 884.817 2.196
S1 12.5 653.155 1.250 841.025 2.301
S1 17.5 526.465 0.934 1265.433 3.210
S1 32.5 1296.603 2.451 707.980 1.914
S1 37.5 1640.322 2.576 872.473 1.959
S1 42.5 701.613 1.451 731.966 2.164
S1 47.5 1241.730 2.865 859.870 2.837
S1 62.5 1420.432 3.385 773.337 2.635
S1 67.5 1473.389 2.478 1918.705 4.614
S2 2.5 373.206 0.737 534.245 1.509
S2 7.5 1310.532 2.663 613.555 1.782
S2 12.5 2192.516 4.568 473.918 1.412
S2 17.5 676.055 1.682 623.382 2.217
S2 22.5 634.111 1.223 460.938 1.271
S2 27.5 3331.153 6.492 1165.538 3.248
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 

Hoploscaphites candidates 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

S1 2.5 929.445 7.399 477.264 1.682
S1 7.5 2262.391 9.034 919.957 1.626
S1 12.5 1407.234 6.195 568.949 1.109
S1 17.5 895.423 3.655 464.788 0.840
S1 32.5 2468.561 10.736 954.553 1.838
S1 37.5 3976.392 14.367 1830.487 2.927
S1 42.5 1935.495 9.207 593.163 1.249
S1 47.5 1452.461 7.710 753.260 1.770
S1 62.5 2940.578 16.122 1473.613 3.576
S1 67.5 1995.245 7.720 1668.781 2.858
S2 2.5 747.733 3.399 333.517 0.671
S2 7.5 1382.136 6.460 1219.453 2.523
S2 12.5 3328.246 15.952 2018.030 4.281
S2 17.5 971.218 5.557 666.030 1.687
S2 22.5 801.759 3.556 489.688 0.961
S2 27.5 3972.158 17.809 2750.446 5.458

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

S1 2.5 1680.081 14.130 2097.634 4.632
S1 7.5 3447.681 14.545 4458.938 4.939
S1 12.5 2998.697 13.946 4022.630 4.912
S1 17.5 3274.164 14.122 4434.066 5.021
S1 32.5 3435.729 15.788 3551.256 4.285
S1 37.5 5545.564 21.169 4098.000 4.107
S1 42.5 2998.499 15.071 3625.386 4.784
S1 47.5 2647.014 14.846 3056.276 4.500
S1 62.5 2667.383 15.451 2545.437 3.871
S1 67.5 4227.225 17.280 3902.494 4.189
S2 2.5 2812.526 13.506 4496.015 5.669
S2 7.5 2428.104 11.991 4250.387 5.511
S2 12.5 1970.739 9.979 3389.025 4.506
S2 17.5 2199.829 13.299 3635.913 5.771
S2 22.5 2612.656 12.243 4590.141 5.648
S2 27.5 2749.112 13.022 3636.406 4.523
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Eutrephoceras candidates 

Sample  [Al] 
ppm 

Al/Ca 
(mMol/Mol) 

[Ca] 
ppm 

E2 2.5 N/A N/A 357989.515
E2 7.5 N/A N/A 392733.687
E2 12.5 N/A N/A 316045.993
E2 17.5 N/A N/A 343872.149
E2 22.5 N/A N/A 379829.797
E2 27.5 N/A N/A 339860.586
E2 32.5 N/A N/A 358598.942
E2 37.5 N/A N/A 386914.337
E2 42.5 N/A N/A 415595.254
E2 47.5 N/A N/A 321592.717
E2 52.5 N/A N/A 268579.797
E2 57.5 N/A N/A 371053.678
E2 62.5 N/A N/A 333722.987
E2 67.5 N/A N/A 344491.441
E2 72.5 N/A N/A 302795.163
E2 77.5 N/A N/A 386660.944
E2 82.5 N/A N/A 719557.827
E2 87.5 281.205 1.999 209487.467
E2 92.5 N/A N/A 262396.338
E2 97.5 N/A N/A 295143.927
E2 102.5 124.799 0.710 261856.053
E2 107.5 N/A N/A 315942.621
E2 112.5 N/A N/A 426532.824
E2 117.5 N/A N/A 380409.148
E2 122.5 N/A N/A  N/A
E2 127.5 N/A N/A 358731.534
E2 132.5 N/A N/A 381276.879
E2 137.5 N/A N/A 389496.894
E2 142.5 N/A N/A 307078.777
E2 147.5 N/A N/A 355207.188
E2 152.5 N/A N/A 329934.782
E2 157.5 N/A N/A 321906.769
E2 162.5 N/A N/A 350568.683
E2 167.5 N/A N/A 344855.345
E2 172.5 N/A N/A 370882.865
E2 177.5 N/A N/A 119064.165
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Eutrephoceras candidates 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

E2 2.5 938.191 1.880 323.853 0.928
E2 7.5 3131.102 5.719 365.827 0.955
E2 12.5 5840.093 13.256 306.323 0.994
E2 17.5 2553.503 5.327 242.078 0.722
E2 22.5 327.995 0.619 172.459 0.466
E2 27.5 368.158 0.777 765.244 2.309
E2 32.5 6239.827 12.482 66.705 0.191
E2 37.5 43.613 0.081 208.561 0.553
E2 42.5 303.957 0.525 492.421 1.215
E2 47.5 277.377 0.619 74.623 0.238
E2 52.5 218.064 0.582 80.698 0.308
E2 57.5 1126.252 2.177 696.592 1.925
E2 62.5 8376.820 18.006 330.674 1.016
E2 67.5 1781.972 3.711 92.997 0.277
E2 72.5 328.411 0.778 126.692 0.429
E2 77.5 884.107 1.640 294.667 0.782
E2 82.5 2249.656 2.243 240.859 0.343
E2 87.5 634.189 2.172 254.076 1.244
E2 92.5 351.399 0.961 438.625 1.714
E2 97.5 674.868 1.640 713.208 2.478
E2 102.5 775.879 2.126 550.986 2.158
E2 107.5 675.692 1.534 587.231 1.906
E2 112.5 766.888 1.290 2956.035 7.108
E2 117.5 1037.426 1.956 1507.606 4.064
E2 122.5  N/A N/A  N/A N/A
E2 127.5 122.770 0.246 714.571 2.043
E2 132.5 111.700 0.210 602.870 1.622
E2 137.5 323.470 0.596 869.781 2.290
E2 142.5 893.415 2.087 719.905 2.404
E2 147.5 536.647 1.084 665.591 1.922
E2 152.5 63.138 0.137 1001.761 3.114
E2 157.5 1080.845 2.409 687.522 2.190
E2 162.5 1450.485 2.968 943.150 2.759
E2 167.5 121.729 0.253 1431.286 4.257
E2 172.5 39.575 0.077 494.127 1.366
E2 177.5  N/A N/A 968.986 8.346
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Eutrephoceras candidates 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

E2 2.5 558.708 2.575 1596.912 3.258
E2 7.5 3359.352 14.115 4139.469 7.699
E2 12.5 4393.909 22.942 4555.007 10.527
E2 17.5 1501.208 7.204 4232.184 8.990
E2 22.5 525.503 2.283 564.516 1.086
E2 27.5 529.075 2.569 564.660 1.214
E2 32.5 7783.962 35.820 3775.783 7.691
E2 37.5 90.974 0.388 171.050 0.323
E2 42.5 525.259 2.086 371.867 0.654
E2 47.5 380.864 1.954 518.794 1.178
E2 52.5 792.042 4.866 327.559 0.891
E2 57.5 2761.972 12.283 992.663 1.954
E2 62.5 9996.105 49.429 3297.253 7.217
E2 67.5 987.714 4.731 1497.412 3.175
E2 72.5 712.695 3.884 213.278 0.514
E2 77.5 1412.707 6.029 1144.864 2.163
E2 82.5 3027.117 6.942 3259.342 3.309
E2 87.5 1130.262 8.903 659.651 2.300
E2 92.5 1348.895 8.483 249.326 0.694
E2 97.5 1396.050 7.806 401.265 0.993
E2 102.5 451.286 2.844 311.868 0.870
E2 107.5 3108.621 16.237 1080.125 2.497
E2 112.5 289.345 1.119  N/A N/A
E2 117.5 346.270 1.502 1932.354 3.710
E2 122.5  N/A N/A  N/A N/A
E2 127.5 126.928 0.584 34.516 0.070
E2 132.5 151.922 0.658 22.586 0.043
E2 137.5 229.721 0.973 94.090 0.176
E2 142.5 4813.707 25.868 1292.276 3.074
E2 147.5 203.056 0.943 205.688 0.423
E2 152.5 215.164 1.076 38.379 0.085
E2 157.5 167.241 0.857 398.627 0.905
E2 162.5 240.580 1.132 178.241 0.371
E2 167.5 91.297 0.437  N/A N/A
E2 172.5 136.143 0.606 96.542 0.190
E2 177.5 1023.247 14.182  N/A N/A
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(CONTINUED) 
 
Eutrephoceras candidates 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

E2 2.5 3143.566 15.310 2815.277 3.600
E2 7.5 2433.356 10.802 2745.420 3.200
E2 12.5 2074.545 11.444 2159.821 3.128
E2 17.5 2337.642 11.852 2497.766 3.325
E2 22.5 3097.241 14.217 3382.274 4.076
E2 27.5 3127.369 16.043 2890.340 3.893
E2 32.5 1328.274 6.458 1727.350 2.205
E2 37.5 3673.192 16.552 3718.224 4.399
E2 42.5 4029.576 16.905 3791.570 4.176
E2 47.5 2677.898 14.518 2817.560 4.011
E2 52.5 2331.152 15.133 2297.579 3.916
E2 57.5 3101.720 14.574 3186.961 3.932
E2 62.5 891.246 4.656 854.129 1.172
E2 67.5 2635.394 13.338 2502.775 3.326
E2 72.5 2479.422 14.276 2627.486 3.972
E2 77.5 3043.543 13.724 3157.269 3.738
E2 82.5 5390.879 13.062 5796.172 3.687
E2 87.5 1792.081 14.915 1788.658 3.908
E2 92.5 2718.365 18.062 2343.992 4.089
E2 97.5 2872.468 16.968 2338.568 3.627
E2 102.5 2732.672 18.195 2296.197 4.014
E2 107.5 2539.856 14.016 2118.883 3.070
E2 112.5 6065.631 24.794 2974.800 3.193
E2 117.5 4048.767 18.556 3071.339 3.696
E2 122.5  N/A N/A  N/A N/A
E2 127.5 4169.405 20.264 3173.310 4.049
E2 132.5 4231.817 19.351 3415.773 4.101
E2 137.5 4656.530 20.844 3430.437 4.032
E2 142.5 2415.989 13.717 1728.667 2.577
E2 147.5 4109.150 20.169 3364.547 4.336
E2 152.5 4303.299 22.740 2895.533 4.017
E2 157.5 3467.890 18.782 2972.524 4.227
E2 162.5 4367.932 21.723 3176.304 4.148
E2 167.5 4073.746 20.596 3040.137 4.035
E2 172.5 3739.776 17.580 3621.499 4.470
E2 177.5 7042.681 103.127 863.113 3.318
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Nymphalucina and Anomia candidates 

Sample  [Al] 
ppm 

Al/Ca 
(mMol/Mol) 

[Ca] 
ppm 

N1 2.5 N/A N/A 383590.021
N1 7.5 N/A N/A 362891.188
N1 12.5 N/A N/A 398020.200
N1 17.5 N/A N/A 392288.327
N1 32.5 N/A N/A 323092.385
A1 2.5 N/A N/A 358872.790
A1 7.5 N/A N/A 384260.889
A1 12.5 N/A N/A 374301.768
A1 17.5 N/A N/A 353644.015
A1 32.5 313.512 1.336 349475.836
A1 37.5 N/A N/A 373988.796
A1 42.5 278.264 1.208 342863.817

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

N1 2.5 170.106 0.318 362.403 0.969
N1 7.5 67.622 0.134 234.074 0.662
N1 12.5 N/A N/A 148.942 0.384
N1 17.5 N/A N/A 131.907 0.345
N1 32.5 N/A N/A 171.604 0.545
A1 2.5 918.146 1.835 323.444 0.924
A1 7.5 1451.142 2.709 209.154 0.558
A1 12.5 829.541 1.590 241.885 0.663
A1 17.5 709.174 1.439 156.098 0.453
A1 32.5 3036.520 6.233 486.185 1.427
A1 37.5 710.092 1.362 290.445 0.796
A1 42.5 3401.292 7.116 421.545 1.261
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Nymphalucina and Anomia candidates 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

N1 2.5 2285.270 9.831 N/A N/A
N1 7.5 118.549 0.539 N/A N/A
N1 12.5 121.402 0.503 N/A N/A
N1 17.5 41.921 0.176 N/A N/A
N1 32.5 71.621 0.366 N/A N/A
A1 2.5 1163.814 5.352 645.626 1.314
A1 7.5 1212.179 5.206 868.040 1.650
A1 12.5 1190.934 5.251 508.333 0.992
A1 17.5 1388.580 6.480 679.623 1.404
A1 32.5 1525.369 7.203 1569.174 3.280
A1 37.5 1236.942 5.458 662.344 1.294
A1 42.5 1677.122 8.072 1378.195 2.936

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

N1 2.5 2778.774 12.630 2293.196 2.737
N1 7.5 2632.913 12.650 1591.672 2.008
N1 12.5 2977.844 13.044 1645.657 1.893
N1 17.5 2781.541 12.362 1558.266 1.818
N1 32.5 2513.402 13.563 1289.327 1.827
A1 2.5 3073.618 14.932 1344.809 1.715
A1 7.5 3051.470 13.845 1681.350 2.003
A1 12.5 2922.953 13.615 2210.529 2.703
A1 17.5 3226.778 15.908 1198.267 1.551
A1 32.5 2992.887 14.931 1227.686 1.608
A1 37.5 3358.447 15.657 1528.931 1.871
A1 42.5 2985.336 15.181 1362.495 1.819
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Inoceramus candidates 

Sample  [Al] 
ppm 

Al/Ca 
(mMol/Mol) 

[Ca] 
ppm 

I1 2.5 N/A N/A 311233.753
I1 7.5 6.710 6.710 315723.669
I1 12.5 5.967 5.967 298556.713
I1 17.5 N/A N/A 354651.599
I1 22.5 N/A N/A 366202.379
I1 27.5 N/A N/A 314031.888
I1 32.5 N/A N/A 371512.081
I1 37.5 N/A N/A 377823.081
I1 42.5  N/A N/A 350025.256
I2 2.5 N/A N/A 405596.204
I2 7.5 N/A N/A 386228.463
I2 12.5 N/A N/A 341148.399
I2 17.5 N/A N/A 387708.491
I2 22.5 N/A N/A 386007.936
I2 27.5 N/A N/A 393150.593
I2 32.5 N/A N/A 368654.959
I2 37.5 N/A N/A 390735.564
I2 42.5 N/A N/A 376613.059
I2 47.5 N/A N/A 380720.871
I2 52.5 N/A N/A 404350.446
I2 57.5 N/A N/A 381163.831
I3   N/A N/A 352842.797
I3  N/A N/A 374635.577
I3  N/A N/A 354491.942
I3  N/A N/A 356544.725
I3  N/A N/A 358457.535
I3  N/A N/A 378183.506
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Inoceramus candidates 

Sample  [Fe] 
ppm 

Fe/Ca 
(mMol/Mol) 

[K] 
ppm 

K/Ca 
(mMol/Mol) 

I1 2.5 740.784 1.707 280.234 0.923
I1 7.5 6273.967 14.255 918.821 2.985
I1 12.5 3114.574 7.483 1159.364 3.983
I1 17.5 372.069 0.753 260.439 0.753
I1 22.5 728.480 1.427 209.828 0.588
I1 37.5 1491.288 3.407 171.881 0.561
I1 32.5 1128.745 2.179 193.222 0.533
I1 37.5 481.342 0.914 306.752 0.833
I1 42.5 548.592 1.124 134.286 0.393
I2 2.5 132.397 0.234 200.077 0.506
I2 7.5 431.041 0.801 129.950 0.345
I2 12.5  N/A N/A 169.841 0.511
I2 17.5  N/A N/A 178.982 0.473
I2 22.5  N/A N/A 325.233 0.864
I2 27.5  N/A N/A 179.307 0.468
I2 32.5 24.808 0.048 188.606 0.525
I2 37.5 48.559 0.089 166.232 0.436
I2 42.5 108.046 0.206 191.277 0.521
I2 47.5 86.389 0.163 229.989 0.620
I2 52.5  N/A N/A 122.324 0.310
I2 57.5 2366.774 4.454 253.962 0.683
I3 2.5 17.547 0.036 168.466 0.490
I3 7.5 341.205 0.653 194.376 0.532
I3 12.5 193.455 0.391 523.458 1.514
I3 17.5 1465.781 2.949 170.131 0.489
I3 22.5 485.473 0.972 215.001 0.615
I3 27.5 692.303 1.313 223.124 0.605
I1 2.5 740.784 1.707 280.234 0.923
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Inoceramus candidates 

Sample  [Mg] 
ppm 

Mg/Ca 
(mMol/Mol) 

[Mn] 
ppm 

Mn/Ca 
(mMol/Mol) 

I1 2.5 452.468 2.399 367.301 0.862
I1 7.5 3102.098 16.214 2778.576 6.428
I1 12.5 902.069 4.986 410.499 1.004
I1 17.5 124.178 0.578 133.729 0.275
I1 22.5 441.142 1.988 65.877 0.131
I1 37.5 401.973 2.112 258.259 0.601
I1 32.5 81.242 0.361 154.267 0.303
I1 37.5 99.908 0.436 N/A N/A
I1 42.5 62.324 0.294 N/A N/A
I2 2.5 373.383 1.519 68.772 0.124
I2 7.5 300.494 1.284 N/A N/A
I2 12.5 204.998 0.992 N/A N/A
I2 17.5 183.920 0.783 N/A N/A
I2 22.5 224.038 0.958 N/A N/A
I2 27.5 153.988 0.646 N/A N/A
I2 32.5 192.483 0.862 6.257 0.012
I2 37.5 188.492 0.796  N/A N/A
I2 42.5 283.073 1.240 40.911 0.079
I2 47.5 272.151 1.180 4.696 0.009
I2 52.5 221.544 0.904  N/A N/A
I2 57.5 524.688 2.272 9.651 0.018
I3 2.5 636.499 2.977 162.376 0.336
I3 7.5 389.245 1.715 506.590 0.988
I3 12.5 241.137 1.123 290.843 0.599
I3 17.5 680.197 3.148 2131.878 4.367
I3 22.5 1239.602 5.707 498.207 1.015
I3 27.5 3348.280 14.610 1256.739 2.427
I1 2.5 636.499 2.399 162.376 0.862
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APPENDIX C:  MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES 
(CONTINUED) 

 
Inoceramus candidates 

Sample  [Na] 
ppm 

Na/Ca 
(mMol/Mol) 

[Sr] 
ppm 

Sr/Ca 
(mMol/Mol) 

I1 2.5 3494.366 19.575 1685.724 2.479
I1 7.5 3106.635 17.155 1816.394 2.634
I1 12.5 3924.016 22.915 1787.118 2.740
I1 17.5 4065.831 19.988 1933.915 2.496
I1 22.5 4246.498 20.217 2114.187 2.643
I1 37.5 3499.893 19.431 1632.272 2.379
I1 32.5 4059.590 19.051 2098.192 2.585
I1 37.5 4337.164 20.014 2058.813 2.494
I1 42.5 3785.824 18.857 2102.860 2.750
I2 2.5 4558.486 19.595 1987.458 2.243
I2 7.5 4213.404 19.020 2010.075 2.382
I2 12.5 3960.495 20.241 1660.538 2.228
I2 17.5 4316.053 19.409 1951.055 2.304
I2 22.5 4343.952 19.620 1939.585 2.300
I2 27.5 4546.847 20.164 1959.102 2.281
I2 32.5 4472.340 21.151 1786.193 2.218
I2 37.5 4511.545 20.131 2049.885 2.402
I2 42.5 4440.401 20.556 1794.189 2.181
I2 47.5 4283.955 19.618 1830.258 2.201
I2 52.5 4288.871 18.493 1887.894 2.137
I2 57.5 4317.318 19.748 1713.865 2.058
I3 2.5 3907.010 19.305 2010.343 2.608
I3 7.5 4882.861 22.724 2139.548 2.614
I3 12.5 4029.178 19.816 2077.490 2.683
I3 17.5 3586.001 17.535 1907.647 2.449
I3 22.5 3842.407 18.689 2011.537 2.569
I3 27.5 3803.934 17.537 1818.348 2.201
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APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY 
 

Sample  del-13-C del-18-O 
I2 L05 5.23 -5.32 
I2 L10 5.72 -5.87 
I2 L15 5.54 -5.55 
I2 L20 5.89 -5.59 
I2 L25 N/A N/A 
I2 R05 5.63 -5.35 
I2 R10 5.96 -5.77 
I2 R15 6.10 -5.66 
I2 R20 6.02 -5.72 
I2 R25 4.52 -3.62 
I2 MTX N/A N/A 
I2 0 5.47 -5.44 
I2 2.5 4.59 -7.02 
I2 5 3.72 -7.19 
I2 7.5 4.17 -3.83 
I2 10 5.72 -5.43 
I2 12.5 5.25 -6.55 
I2 15 5.96 -5.73 
I2 17.5 5.94 -5.81 
I2 20 5.54 -5.14 
I2 22.5 5.76 -5.82 
I2 25 5.83 -5.60 
I2 27.5 5.94 -5.73 
I2 30 5.89 -5.65 
I2 32.5 6.10 -5.66 
I2 35 5.40 -5.23 
I2 37.5 5.95 -5.52 
I2 40 3.95 -4.18 
I2 42.5 5.61 -5.57 
I2 45 5.92 -5.63 
I2 47.5 5.84 -2.21 
I2 50 5.15 -5.07 
I2 52.5 6.00 -5.77 
I2 55 6.07 -5.55 
I2 57.5 5.45 -5.53 
I2 60 5.64 -5.58 
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APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED) 
 

Sample  del-13-C del-18-O 
B7 L2.5 -3.40 -1.44 
B7 L5.0 N/A N/A 
B7 L7.5 -2.68 -1.06 
B7 L10.0 -3.08 -1.54 
B7 L12.5 -2.51 -1.07 
B7 R2.5 -2.98 -1.35 
B7 R5.0 N/A N/A 
B7 R7.5 -3.17 -1.54 
B7 R10.0 -5.61 -3.47 
B7 R12.5 -5.50 -1.72 
B7 MTX -23.65 -2.10 
B7 0 -11.8716 -1.44463 
B7 2.5 -2.95515 -1.05585 
B7 5 -2.80042 -0.96956 
B7 7.5 -2.67933 -1.12274 
B7 10 -5.47786 -1.40391 
B7 12.5 -2.78312 -1.16152 
B7 15 -3.74223 -1.29338 
B7 17.5 -2.91671 -1.13923 
B7 20 -2.81291 -1.25169 
B7 22.5 -3.11564 -1.43784 
B7 25 -3.52696 -1.84117 
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APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED) 
 

Sample  del-13-C del-18-O 
E2 L05 N/A N/A 
E2 L10 1.26 -0.34 
E2 L25 0.33 -0.48 
E2 L30 0.03 -0.78 
E2 R05 0.74 -0.81 
E2 R10 0.59 -0.66 
E2 R15 0.40 -0.60 
E2 R20 -0.66 -1.37 
E2 R25 -0.20 -0.76 
E2 MTX -22.15 -1.69 
E2 CEM1 -14.97 -4.03 
E2 CEM2 N/A N/A 
E2 CEM3 0.18 -1.18 
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APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED) 
 

Sample  del-13-C del-18-O 
E2 0 -2.34 -1.99 
E2 5 -1.57 -1.29 
E2 10 -1.24 -1.43 
E2 15 -1.38 -1.47 
E2 20 -1.04 -0.99 
E2 25 -0.93 -1.21 
E2 30 -0.89 -0.84 
E2 35 0.70 -0.81 
E2 40 -2.28 -2.46 
E2 45 -0.48 -0.90 
E2 50 N/A N/A 
E2 55 -4.41 -3.78 
E2 60 -0.83 -1.03 
E2 65 N/A N/A 
E2 70 0.12 -1.08 
E2 75 -1.79 -2.16 
E2 80 -0.59 -1.02 
E2 85 -1.28 -1.12 
E2 90 0.43 -0.57 
E2 95 -0.15 -0.93 
E2 95 -0.15 -0.93 
E2 100 N/A N/A 
E2 105 -3.24 -1.39 
E2 110 N/A N/A 
E2 115 0.31 -0.71 
E2 120 N/A N/A 
E2 125 -1.96 -0.72 
E2 130 N/A N/A 
E2 135 0.17 -0.79 
E2 140 N/A N/A 
E2 145 0.16 -0.81 
E2 150 N/A N/A 
E2 155 0.59 -0.84 
E2 160 0.51 -0.58 
E2 165 0.89 -0.42 
E2 170 -13.47 -3.29 
E2 175 0.01 -1.15 
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