

# University of South Florida Scholar Commons

Graduate Theses and Dissertations

### Graduate School

4-11-2006

Investigation of Cretaceous Molluscan Shell Material for Isotopic Integrity: Examples and Implications from the Baculites compressus/ cuneatus Biozones (Campanian) of the Western Interior Seaway

Ashley da Silva University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the <u>American Studies Commons</u>

#### Scholar Commons Citation

da Silva, Ashley, "Investigation of Cretaceous Molluscan Shell Material for Isotopic Integrity: Examples and Implications from the Baculites compressus/cuneatus Biozones (Campanian) of the Western Interior Seaway" (2006). *Graduate Theses and Dissertations*. http://scholarcommons.usf.edu/etd/3921

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.



Investigation of Cretaceous Molluscan Shell Material for Isotopic Integrity:

Examples and Implications from the Baculites compressus/cuneatus Biozones

(Campanian) of the Western Interior Seaway

by

Ashley da Silva

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Geology College of Arts and Sciences University of South Florida

Major Professor: Peter J. Harries, Ph.D. Gregory S. Herbert, Ph.D. Eric A. Oches, Ph.D.

> Date of Approval: April 11, 2006

Keywords: Cretaceous, Campanian, epicontinental sea, paleoclimatology, paleooceanography, fossil preservation, mollusks, oxygen, carbon, minor elements

© Copyright 2006, Ashley da Silva



### DEDICATION

I dedicate this Master's thesis to teachers of science. This is not because it is a study in science education, because it is not. This thesis is, however, part of the education of a science teacher. Experience with the scientific method and both the excitement and complications of scientific research should serve me well in communicating the nature of science to students. I hope that reading this document will help others who I do not formally teach to learn something about fossils, their preservation, and the paleooceanographic information they can contain.

I also dedicate this Master's thesis to teachers of science that I have been fortunate enough to learn from. Some of them have been in middle schools, high schools, and universities; others teach informally. These teachers have:

- (1) Rewarded curiosity; the fundamental first step in scientific research
- (2) Brought science home from research journals and newsmagazines into the classroom
- (3) Defined science as a process undertaken by people, rather than a body of knowledge

Without support from exemplary teachers of science, I, and, I suspect, many students of science, would not be realizing their scientific curiosity with research.



i

#### ACKNOWLEDGMENTS

I would like to acknowledge the contributions of the University of South Florida Department of Geology, especially Dr. Peter Harries, for providing necessary facilities, fossil collection opportunities, and financial support. I would like to thank my committee members, Dr. Gregory S. Herbert and Dr. Eric A. Oches, for their valuable perspectives shared during this project. I would also like to acknowledge Dr. Terrence M. Quinn for use of his laboratory at the USF Marine Science campus in St. Petersburg, and to Ethan Goddard for running my samples on the ICP-OES and mass spectrometer there.

I would like to acknowledge the research of my colleagues, Dr. Neil Landman and Kathleen Sarg at the American Museum of Natural History, and Dr. Kirk Cochran at the State University of New York – Stonybrook. This investigation is a part of a National Science Foundation-funded grant, and I give thanks to the NSF for the financial support.

I would like to thank Neal Larson of the Black Hills Institute of Geological Research for the *Eutrephoceras* specimens used for sclerochronology. Likewise, I would like to thank William Cobban for samples of *Baculites* and *Didymoceras*.

I would like to acknowledge the Geological Society of America for allowing me to present this research at their 2005 annual meeting, and both the Southeastern Section of GSA and the USF Graduate Student Organization for providing travel reimbursement.

Lastly, I would like to thank my family for being supportive of my undertaking of a Master's degree and their patience with the time demands of my work.



ii

## TABLE OF CONTENTS

| LIST OF TABLES                                                   | iv  |
|------------------------------------------------------------------|-----|
| LIST OF FIGURES                                                  | v   |
| ABSTRACT                                                         | vii |
| 1. INTRODUCTION                                                  |     |
| 1.1 An Introduction to the Western Interior Seaway               | 1   |
| 1.2 Biozones Selected for Study                                  | 2   |
| 1.3 Locations Selected for Study                                 | 5   |
| 1.4 Fossils Recovered                                            | 6   |
| 2. SHELL ALTERATION INVESTIGATION                                |     |
| 2.1 Previous Investigations of Molluscan Fossil Shell Alteration | 13  |
| 2.2 Methods                                                      | 19  |
| 2.3 Results                                                      | 28  |
| 2.4 Discussion                                                   | 67  |
| 3. SCLEROCHRONOLOGY INVESTIGATION                                |     |
| 3.1 Previous Investigations of Molluscan Sclerochronology        | 100 |
| 3.2 Methods                                                      | 103 |
| 3.3 Results                                                      | 108 |
| 3.4 Discussion                                                   | 128 |
| 4. CONCLUSIONS                                                   | 136 |
| REFERENCES                                                       | 140 |
| APPENDICES                                                       |     |
| Appendix A: Shell Alteration Mass Spectrometer Data              | 146 |
| Appendix B: Shell Alteration ICP Data                            | 156 |
| Appendix C: Sclerochronology ICP Data                            | 192 |
| Appendix D: Sclerochronology Mass Spectrometer Data              | 208 |



# LIST OF TABLES

| <b>TABLE 1</b> —Upper Campanian Biozones for the Western Interior Seaway                     | 4  |
|----------------------------------------------------------------------------------------------|----|
| <b>TABLE 2</b> —Fossil Genera Investigated in this Study                                     | 11 |
| <b>TABLE 3</b> —Morphology of Ammonites Investigated in this Study                           | 12 |
| <b>TABLE 4</b> —Specimen Suites Used in Shell Alteration Investigations                      | 22 |
| <b>TABLE 5</b> —Detection Limits for ICP-OES System                                          | 25 |
| <b>TABLE 6</b> —Summary Statistics for Mode of Preservation Suite                            | 32 |
| <b>TABLE 7</b> —Summary Statistics for "Shell Sampling Position" Suite                       | 40 |
| <b>TABLE 8</b> —Descriptive Names for Munsell Designations of Shell Color Classes            | 46 |
| <b>TABLE 9</b> —Summary Statistics for 'Shell Color' Suite: Shell Opalescence                | 47 |
| <b>TABLE 10</b> —Summary Statistics for 'Shell Color' Suite: Shell Color                     | 48 |
| <b>TABLE 11</b> —Colors for Unaltered Shell, by Genus                                        | 51 |
| <b>TABLE 12</b> —Summary of Statistical Tests on Cemented and Uncemented Shell               | 60 |
| <b>TABLE 13</b> —Statistical Tests for Kremmling Cements, Concretions, and Shell             | 64 |
| <b>TABLE 14</b> —Statistical Tests for Game Ranch Concretions and Shell                      | 65 |
| <b>TABLE 15</b> —Statistical Tests for Trask Ranch Cements, Concretions, and Shell           | 66 |
| <b>TABLE 16</b> —Statistics Comparing $\delta^{18}$ O of Pre-filter and Post-filter Datasets | 95 |
| <b>TABLE 17</b> —Statistics Comparing $\delta^{13}$ C of Pre-filter and Post-filter Datasets | 97 |
| <b>TABLE 18</b> —Paleoenvironmental Parameters Derived from Filtered Data                    | 98 |



# LIST OF FIGURES

| FIGURE 1—Extent of the Western Interior Seaway During the<br>Baculites compressus/Baculites cuneatus Biozones             | 9         |
|---------------------------------------------------------------------------------------------------------------------------|-----------|
| FIGURE 2—Mode of Preservation Stable Isotope Cross-Plot                                                                   | 31        |
| FIGURE 3—Sr/Ca and Mg/Ca Ratios for "Mode of Preservation" Suite                                                          | 33        |
| <b>FIGURE 4</b> —Radar Charts for Minor Element Concentrations in the "Mode of Preservation Suite"                        | 34        |
| FIGURE 5—Shell Sampling Position Stable Isotope Cross-Plot                                                                | 39        |
| FIGURE 6—Shell Sampling Position Sr/Ca-Mg/Ca Cross-Plot                                                                   | 41        |
| <b>FIGURE 7</b> —Radar Charts for Minor Elements in "Shell Sampling Position" Specimens                                   | 42        |
| FIGURE 8—Shell Color Stable Isotope Cross-Plot                                                                            | 49        |
| FIGURE 9—Shell Color Sr/Ca-Mg/Ca Cross-Plot                                                                               | 50        |
| FIGURE 10— Radar Charts for Minor Elements in Cemented and Uncemented Shell                                               | 57        |
| FIGURE 11—Minor Element Content of "Cementation Suite Samples"                                                            | 58/59     |
| FIGURE 12—Comparison of Cements, Concretions, and Shell Material for Kremmling                                            | 61        |
| <b>FIGURE 13</b> —Comparison of External Recrystallizations or Cements,<br>Concretions, and Shell Material for Game Ranch | 62        |
| <b>FIGURE 14</b> —Comparison of Cements, Concretions, and Shell Material for Trask Ranch                                  | 63        |
| FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter                                                                  | 85-<br>90 |



| FIGURE 16—Stable Isotope Cross Plot for All Shell Samples                                                           | 92/93       |
|---------------------------------------------------------------------------------------------------------------------|-------------|
| FIGURE 17—Isotope Cross-Plot For All Shell Samples, Filtered by Mg/Ca and Sr/Ca                                     | 106-<br>107 |
| FIGURE 18—Oxygen Isotope Range Chart                                                                                | 94          |
| FIGURE 19— Carbon Isotope Range Chart                                                                               | 96          |
| FIGURE 20—Stable Isotope Ranges for Genera in this Study and Prior Research                                         | 99          |
| FIGURE 21—Specimens Used in Sclerochronology                                                                        | 97/98       |
| FIGURE 22—Minor Element Ratios for Sclerochronology: Bivalves                                                       | 111         |
| FIGURE 23—Sclerochronology of Inoceramus Specimen I2                                                                | 112         |
| <b>FIGURE 24</b> — $\delta^{18}$ O Versus $\delta^{13}$ C for <i>Inoceramus</i> Specimen I2                         | 113         |
| <b>FIGURE 25</b> —Calculated Paleotemperature and Paleosalinity through "Ontogeny" in <i>Inoceramus</i> Specimen I2 | 114         |
| FIGURE 26— Minor Element Ratios for Sclerochronology: Baculites                                                     | 117         |
| FIGURE 27—Sclerochronology of <i>Baculites</i> Specimen B7                                                          | 118         |
| FIGURE 28—Stable Isotope Sclerochronology of <i>Baculites</i> Specimen B7                                           | 119         |
| <b>FIGURE 29</b> — $\delta^{18}$ O Versus $\delta^{13}$ C in <i>Baculites</i> Specimen B7                           | 120         |
| FIGURE 30—Calculated Paleotemperature and Paleosalinity in <i>Baculites</i>                                         | 121         |
| Specimen B7<br>FIGURE 31—Sclerochronology of <i>Eutrephoceras</i> Specimen E2                                       | 124         |
| FIGURE 32—Stable Isotope Sclerochronology of Eutrephoceras Specimen E2                                              | 125         |
| <b>FIGURE 33</b> — $\delta^{18}$ O Versus $\delta^{13}$ C in <i>Eutrephoceras</i> Specimen E2                       | 126         |
| <b>FIGURE 34</b> — Calculated Paleotemperature and Paleosalinity in <i>Eutrephoceras</i> Specimen E2                | 127         |



# INVESTIGATION OF CRETACEOUS MOLLUSCAN SHELL MATERIAL FOR ISOTOPIC INTEGRITY: EXAMPLES AND IMPLICATIONS FROM THE BACULITES COMPRESSUS/CUNEATUS BIOZONES (CAMPANIAN) OF THE WESTERN INTERIOR SEAWAY

Ashley da Silva

### ABSTRACT

Whether a global greenhouse interval is a distinct or distant future, it is important to understand the dynamics of a greenhouse system. During such intervals the oceans, in the absence of sizeable polar ice caps, flood the continental shelf. The stratification and circulation of these epicontinental seas are open to debate, because there are no Recent analogs. The carbon and oxygen stable isotope record of fossil molluscan shell from epicontinental seas has the potential to reveal their stratification and seasonal cycles.

As a study sample, mollusks from the *Baculites compressus* and *Baculites cuneatus* biozones of the Western Interior Seaway of North America were collected from three locations: Kremmling, Colorado; Trask Ranch, South Dakota; Game Ranch, South Dakota. These fossils date to the Campanian (Late Cretaceous). Taxa include ammonites, bivalves, gastropods, and nautiloids.

The first part of this investigation, described in Chapter 2, investigates the degree of alteration in these specimens. Elevated concentrations of minor elements such as magnesium and strontium reveal alteration from the original aragonite and/or calcite skeletons. Concentrations of these elements obtained by ICP-OES analysis are compared within several suites of specimens: mode of preservation, shell testing location, shell



vii

color, cementation, appearance under light microscope, and appearance under scanning electron microscope. Each of these suites tests a hypothesis about optimal shell preservation. Shell was found to be preserved best in shale rather than concretions, ammonite phragmacone rather than septa, opalescent specimens rather that nonopalescent ones, and uncemented shells rather than cemented shells, especially those with second-order versus first-order cement. Salinity and temperature values were derived for the organisms in the Western Interior Seaway: while bivalves produced unusually low temperatures, the others were reasonable for an inland sea.

The second part of this study, described in Chapter 3, examines the isotopic record within exemplary mollusk shells, taken perpendicular to growth lines. The data for this investigation in sclerochronology documents the dominant isotopically enigmatic bottom-water habitat of the *Inoceramus*, the geochemical signature of the overlying water mass inhabited by *Baculites*, and short-term migrations between the two water masses in the nautiloid *Eutrephoceras*.



viii

#### **CHAPTER 1. INTRODUCTION**

#### 1.1 An Introduction to the Western Interior Seaway

The Western Interior Seaway, an epicontinental sea during the Cretaceous Period, has no modern analog. The seaway connected with open oceanic conditions in the north and south, unlike the restricted circulation of today's Hudson Bay, Persian Gulf, or North Sea. Reconstructing how these bodies of water affected global temperatures, water circulation, and biological migration and evolution patterns requires knowledge of the nature of water masses within these seaways. Several models for the structure of the Western Interior Seaway have been proposed. Of particular concern is the fate of the fresh water entering the basin from the east, as well as from the Sevier Orogenic Belt to the west. Wright (1987) argues, based on stable-isotope data from mollusk shells and whole-rock samples, that the intermediate waters in which most ammonites lived were cooler and less saline than the deep waters the bivalves inhabited. The models call for above-normal salinity in the bottom water due to coastal evaporation and subsequent sinking or below-normal salinity for the intermediate water due to high freshwater runoff rates, respectively. Tsujita and Westermann (1998) added a third layer – a "brachyhaline water cap" extending from the shoreline and tapering off towards the center of the seaway -- to explain their very light  $\delta^{18}$ O values for *Placenticeras* ammonites. In contrast, Slingerland (1996) argues for greater estuarine circulation and mixing in the Western Interior Seaway, such that the salinity stratification only exists near the coasts where freshwater was input. It is certainly possible that at different times, the general



paleoceanographic circulation pattern of the Western Interior Seaway differed. For this study, two biozones in the Upper Campanian were selected. The sites in this investigation represent nearly synchronous deposits, so that any variation in circulation patterns with time is minimized, and included both nearshore and deeper-water environments.

### Biozones Selected for Study

*1.2.1 Selection of Biozones*: The two biozones of the Upper Campanian that were selected were the *Baculites compressus* and *B. cuneatus* biozones. These zones are named for two common orthoconic heteromorph ammonites. The two biozones are often grouped together because of the uncertainty in the numeric date for the boundary between the two zones (Scott and Cobban, 1986) and the apparent stratigraphic overlap between the two ammonite species. Selection of the biozones was part of a larger study, funded by the National Science Foundation and in collaboration with the American Museum of Natural History, New York, to analyze molluscan oxygen, carbon, and strontium isotopes across the former Western Interior Seaway. The stratigraphic formation investigated is called the Pierre Shale in all sampling locations, although the lithologic characteristics of the unit differ between the Colorado and South Dakota locations. A summary of the basic lithologic characteristics of the Upper Campanian outcrops, including the *Baculites compressus* and *B. cuneatus* biozones, is presented in Table 1.



1.2.2 Fauna of the Biozones: The ammonites collected from these biozones consist of species within Baculites, Solenoceras, Axonoceras, Anaklinoceras, Cirroceras, Didymoceras, Pachydiscus, Placenticeras, Hoploscaphites, and Jeletzkytes. Except for the occassional Pachydiscus specimen, Placenticeras is the only planispiral ammonite represented; the remainder are all heteromorphic forms. The nautiloid Eutrephoceras occurs in the biozones. Bivalves include abundant Inoceramus, less frequent Anomia, and many other genera present in low abundances. Gastropods are uncommon and small in size.

# 1.2.3 Prior Research in the Baculites compressus and Baculites cuneatus

*Biozones:* Because of the abundance of fossils in the *Baculites compressus/cuneatus* biozones, they have been used in previous paleooceanographic studies. One of the first studies on stable isotopes using fossil mollusks, by Tourtelot and Rye (1969), used the  $\delta^{18}$ O ratio of *Baculites* specimens and belemnites to conclude that the Western Interior Seaway ranged from 21-33 °C, significantly warmer then the Atlantic coast, which was 17-23 °C at the time. The authors also found lighter oxygen isotopes and heaver carbon isotopes for their bivalve samples (inoceramids and oysters) than for their baculitid samples. This research is supported by Forester et al. (1977), who found an average  $\delta^{18}$ O paleotemperature of 25 °C for the *Baculites compressus* biozone and 20 °C for the *Baculites cuneatus* biozone in southern Saskatchewan. He et al. (2005) disputed the difference in temperature between the two biozones using a more robust collection of baculitid specimens, from both the United States and Canada. They did, however, note a general trend toward heavier isotopic values coinciding with marine regression, which



*Inoceramus* specimens are similar to those of Tourtelot and Rye (1969), but they add data points for the heteromorph ammonites *Didymoceras* and *Scaphites*, which fall between the *Inoceramus* and *Baculites* fields. Schmidt (1997) observed an overlap between epifaunal (primarily, bivalve) and nektonic (primarily, ammonite) stable isotope fields for the Western Interior Seaway. Tsujita and Westermann (1998) attempted to resolve paleotemperatures recorded by ammonites in the uppermost Campanian to the species level, but their intrageneric conclusions are hampered by a small dataset. They noted unrealisticly high paleotemperatures for *Inoceramus*, and also very light  $\delta^{18}$ O (mean = -5.2‰ versus the Pee Dee Belemnite standard) in *Placenticeras*, which they attribute to low salinity in the uppermost part of the water column but which probably reflect diagenetically altered material (Landman, pers. comm., 2005)

Stable isotope sclerochronology has been performed on ammonites, bivalves, and the nautiloid *Eutrephoceras*. Because of their common occurrence, long generic stratigraphic ranges, and tendency to be preserved more completely than *Hoploscaphites* or *Placenticeras*, members of the genera *Baculites* and *Inoceramus* have been studied extensively. Tourtelot and Rye (1969) found a sinusoidal  $\delta^{18}$ O curve in a *Baculites* section, with one minimum and two maxima. The  $\delta^{18}$ O range of this baculitid was from -0.8‰ to -1.2‰, equivalent to a 1.5 °C temperature difference. The  $\delta^{13}$ C curve for this specimen shows a direct relationship with age of the organism, and has superimposed maxima and minima paralleling the oxygen curve. Fatherree et al. (1998) show a slightly larger range (0.2‰ to -1.2‰) in a larger *Baculites* section. These authors note an inverse relationship between  $\delta^{18}$ O and  $\delta^{13}$ C, consistent with temperature being the most significant variable reflected in the isotopic signatures. Along the first six and the last



eight centimeters of the shell, however, the  $\delta^{13}$ C curve parallels the  $\delta^{18}$ O curve.

Likewise, Landman et al. (1983) document a positive correlation between  $\delta^{13}$ C and  $\delta^{18}$ O between the first nine septa in a Western Interior Seaway *Eutrephoceras*, after which the correlation becomes negative. Fatherree (1995) documents an inverse relationship between  $\delta^{13}$ C and  $\delta^{18}$ O in the bivalve *Artica ovata* and a direct relationship between them in another bivalve, *Inoceramus sagensis*. Tourtelot and Rye show an approximately parallel set of  $\delta^{13}$ C and  $\delta^{18}$ O maxima for their *Inoceramus* example. These investigations both calculate *Inoceramus* paleotemperatures above 30°C, a temperature that is at the upper limit for shell precipitation in Recent bivalves. Because inoceramids have no close living relatives, explanations from high-salinity environmental preferences to symbiotic bacteria have been generated to explain the unrealistic  $\delta^{18}$ O paleotemperatures.

# 1.2 Locations Selected for Study

*1.3.1 Kremmling, Colorado, Sampling Site:* The Kremmling, Colorado, sampling site was located on the United States Bureau of Land Management Ammonite Preserve, north of the town of Kremmling, Colorado. Geographic coordinates were 40°14'N, 106°23 to 106°24'W. The outcrops, exposed on hilltops, were comprised of beige siltstone (Munsell color designations 2.5YR7/5 to 2.5YR7/6) with three stratigraphic horizons of concretions. The concretions, up to one meter in diameter, weathered to the same color as the siltstone, but were a light grey (5YR3/2) upon a fresh surface.



*1.3.2 Game Ranch, South Dakota, Sampling Site:* The Game Ranch, South Dakota site was located on a tall cutbank, within a private ranch on the southeastern rim of the Black Hills near the town of Farmingdale. Geographic coordinates were 43°55'N, 102°50'W. The lithology was a black, fissile shale (Munsell designation 5YR3/2 when dry) containing concretions and fossils preserved directly in the shale. Concretions were small, usually containing a single fossil, and had a reddish 10YR2/4 interior and an orange 10YR6/10 weathering rind. Concretionary horizons were obscured by shale erosion.

*1.3.3 Trask Ranch, South Dakota, Sampling Site:* The Trask Ranch, South Dakota, site was located on a private ranch, also on the southeastern side of the Black Hills. Geographic coordinates for this site were 44°14'N, 102°28'W. Large (25 cm to 1 m) concretions were dispersed in a riverbed; from these, numerous fossils were recovered. Some concretions contained mostly intact fossils, while others contained a "shell hash" of small broken fragments. Concretions at this site were 5YR3/2 to 5YR5/2 in color. Some showed veins of calcite crystals typical of septarian concretion, but ferrous weathering rinds were not well-developed as in the Game Ranch specimens.

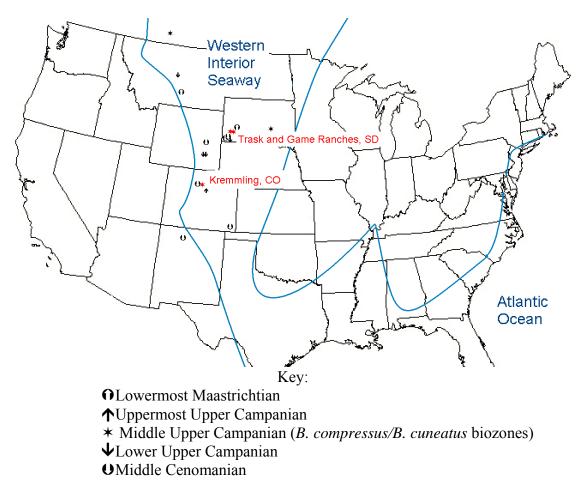
#### 1.4. Fossils Recovered

*1.4.1 Fossils from Kremmling, Colorado*: At the Kremmling, Colorado, site, large, numerous *Placenticeras* -- including mature macroconchs, mature microconchs, and juveniles -- were found (though most were internal and external molds with limited shell preservation). Classification for *Placenticeras* and other genera examined in this study is summarized in Table 2. One of the *Placenticeras* specimens had limpets of the



genus *Anisomyon* adhering to its shell, but these had little to no shell material preserved. Specimens of *Hoploscaphites* and *Baculites* were also relatively common. *Baculites* specimens appeared to be *Baculites compressus*, but many specimens were crushed, making evaluation of the amount of inflation, a key identification parameter, difficult. One *Axonoceras compressum* and two *Anaklinoceras gordiale* specimens were found, suggesting that the location is part of the *Baculites compressus* biozone. The morphology of these ammonites and others used in this investigation are described in Table 3. Unfortunately, the quantity of shell preserved on these tiny heteromorph ammonites did not allow for chemical analysis. Partial specimens of the nautiloid *Eutrephoceras* also had insufficient shell material. Bivalves recovered included numerous *Inoceramus*, some preserved with calcitic and aragonitic layers together, but most with layers separated. *Anomia* was also represented, as were small (< 1 cm) bivalves and gastropods not identified in this study.

*1.4.2 Fossils from Game Ranch, South Dakota:* At the Game Ranch, South Dakota, site, *Hoploscaphites* was nearly absent. *Placenticeras, Baculites*, and *Inoceramus* were all present in both shale and concretions. Fossils did not appear to be compressed or otherwise deformed. Five *Nymphalucina* bivalves were discovered in the shale. In addition, two specimens each of *Anomia* and a scaphopod were collected. Only the bivalves were complete.




*1.4.3 Fossils from Trask Ranch, South Dakota:* At the Trask Ranch, South Dakota, *Placenticeras* was absent and *Hoploscaphites* fairly common. *Baculites* was the most common ammonite at the site. The most common bivalve was *Inoceramus*, and some concretions contained only specimens of this genus. Rarer genera, for which two to five specimens were collected, include the bivalve *Nymphalucina*, and the gastropods *Drepanocheilus* and *Anisomyon*. A single scaphopod was also found. Some fossils were partial or shattered, especially those in the "fossil hash" concretions, but many others appeared to be complete and undeformed. Two specimens of the nautiloid *Eutrephoceras* were collected from the site by Neal Larson, Black Hills Institute of Geological Research, and sent for the sclerochronology portion of this project.

*1.4.4 Sampling Bias:* The specimens collected at the three sampling locations are in no means an accurate, proportional sample of the Western Interior Seaway fauna from 73 Ma. Fossilization biases likely exist. Thin-shelled *Anomia*, for instance, may have been more common in the seaway than it is in the Kremmling deposits. Small specimens, such as the gastropods and bivalves, could easily have been overlooked during collection. Fossils with a large amount of preserved shell were preferentially collected. Lastly, generic variety was one of the goals in collection, so some specimens of common genera such as *Baculites* and *Inoceramus* were passed by in favor of less-common genera such as *Hoploscaphites*.

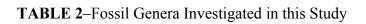


FIGURE 1—Extent of the Western Interior Seaway in the United States During the Baculites compressus / Baculites cuneatus Biozones.



The sample sites for this study are located in the western and central parts of the former Western Interior Seaway. Contemporaneous outcrops also occur in southern Saskatechewan, near the western shoreline of the seaway, and in east-central South Dakota, near the eastern shoreline. Shoreline taken from Larson et al., 1997; data for locations from the American Museum of Natural History (2005).




| Ammonite<br>biozone        | Radiometric<br>Ages from<br>Bentonites<br>(Larson et al.,<br>1997) | Dominant Lithology,<br>Kremmling, Colorado<br>(Scott and Cobban,<br>1986)                                                     | Dominant Lithology,<br>Trask Ranch and Game<br>Ranch, South Dakota,<br>(Larson et al., 1997) |  |
|----------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Baculites<br>jenseni       | Upper<br>boundary =<br>$71.3 \pm 0.5$ Ma                           | Lower portion siltstone;<br>upper portion sandstone<br>with bentonitic shale<br>beds; both bear<br>ironstone concretions      | Unconformity                                                                                 |  |
| Baculites<br>reesidei      |                                                                    | Shale with sparse ironstone concretions                                                                                       | Dark grey, fissile shale<br>with septarian<br>concretions                                    |  |
| Baculites<br>cuneatus      |                                                                    | Shale with septarian concretions                                                                                              | Dark grey, fissile shale<br>with septarian<br>concretions                                    |  |
| Baculites<br>compressus    | 73.35 ±0.39 Ma                                                     | Siltstone and large dated<br>bentonite bed in lower<br>portion; shale in upper<br>portion; both with<br>septarian concretions | Dark grey, fissile shale<br>with septarian<br>concretions                                    |  |
| Didymoceras<br>cheyennense |                                                                    | Siltstone in lower<br>portion, sandstone in<br>upper portion; both with<br>septarian concretions                              | Bentonitic shales                                                                            |  |
| Exiteloceras<br>jenneyi    | 74.6 ±0.72 Ma                                                      | Alternating sandstones<br>and shales with<br>septarian concretions                                                            | Dated bentonite,<br>bentonitic shales                                                        |  |
| Didymoceras<br>stevensoni  |                                                                    | Alternating sandstones<br>and shales with<br>septarian concretions                                                            | Dark grey, fissile shale<br>with septarian<br>concretions                                    |  |
| Didymoceras<br>nebrascense |                                                                    | Alternating sandstones<br>and bentonitic shales<br>with septarian and<br>ironstone concretions                                | Dark grey, fissile shale<br>with septarian<br>concretions                                    |  |

| TABLE 1—Upper Campanian Biozones for the | Western Interior Seaway |
|------------------------------------------|-------------------------|
|------------------------------------------|-------------------------|

The lithology of the *Baculites compressus/Baculites cuneatus* biozones is dominated by dark grey, fissile shale in South Dakota. The Kremmling, Colorado, site also includes siltstones. Both locations contain septarian concretions. The *Baculites compressus* biozone has been dated to approximately 73.4 Ma.



| Phylum Mollusca                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class Bivalvia (Linnaeus, 1758)                                                                                                                                                                                                                                                                                             |
| Subclass Heterodonta (Neumayr, 1884)                                                                                                                                                                                                                                                                                        |
| Order Myoida (Goldfuss, 1820)                                                                                                                                                                                                                                                                                               |
| Family Teredinidae (Rafinesque, 1815)                                                                                                                                                                                                                                                                                       |
| Teredo (Linnaeus, 1758)                                                                                                                                                                                                                                                                                                     |
| Order Veneroida (H and A Adams, 1856)                                                                                                                                                                                                                                                                                       |
| Family Lucinidae (Fleming, 1828)                                                                                                                                                                                                                                                                                            |
| Nymphalucina (Speden, 1970)                                                                                                                                                                                                                                                                                                 |
| Subclass Pteriomorphia (Beurlen, 1944)                                                                                                                                                                                                                                                                                      |
| Order Ostreoida (Férussac, 1822)                                                                                                                                                                                                                                                                                            |
| Family Anomiidae (Rafenisque, 1815)                                                                                                                                                                                                                                                                                         |
| Anomia (Linneaus, 1758)                                                                                                                                                                                                                                                                                                     |
| Order Pterioida (Newell, 1965)                                                                                                                                                                                                                                                                                              |
| Family Inoceramidae <sup>2</sup> (Giebel, 1852)                                                                                                                                                                                                                                                                             |
| Inoceramus (J. Sowerby, 1814)                                                                                                                                                                                                                                                                                               |
| Class Cephalopoda <sup>3</sup> (Cuvier, 1797)                                                                                                                                                                                                                                                                               |
| Subclass Ammonoidea (Author unknown)                                                                                                                                                                                                                                                                                        |
| Order Ammonitida (Hyatt, 1889)                                                                                                                                                                                                                                                                                              |
| Family Baculitidae (Gill, 1871)                                                                                                                                                                                                                                                                                             |
| Baculites (Lamarck, 1799)                                                                                                                                                                                                                                                                                                   |
| Family Nostoceratidae (Hyatt, 1894)                                                                                                                                                                                                                                                                                         |
| Cirroceras (Conrad, 1868)                                                                                                                                                                                                                                                                                                   |
| Didymoceras (Hyatt, 1894)                                                                                                                                                                                                                                                                                                   |
| Family Placenticeratidae (Hyatt, 1900)                                                                                                                                                                                                                                                                                      |
| Placenticeras (Meek, 1870)                                                                                                                                                                                                                                                                                                  |
| Family Scaphitidae (Meek, 1876)                                                                                                                                                                                                                                                                                             |
| Hoploscaphites (Nowak, 1911)                                                                                                                                                                                                                                                                                                |
| Jeletzkytes (Riccardi, 1983)                                                                                                                                                                                                                                                                                                |
| Subclass Nautiloidea (Agassiz, 1847)                                                                                                                                                                                                                                                                                        |
| Order Nautilida (Agassiz, 1847)                                                                                                                                                                                                                                                                                             |
| Family Nautilidae (Blainville, 1825)                                                                                                                                                                                                                                                                                        |
| Eutrephoceras (Hyatt, 1894)                                                                                                                                                                                                                                                                                                 |
| Class Gastropoda <sup>4</sup> (Cuvier, 1797)                                                                                                                                                                                                                                                                                |
| Subclass Prosobranchia (Edwards, 1848)                                                                                                                                                                                                                                                                                      |
| Order Basommatophora (Schmidt, 1855)                                                                                                                                                                                                                                                                                        |
| Family Siphonariidae (Gray, 1840)                                                                                                                                                                                                                                                                                           |
| Anisomyon (Meek and Hayden, 1860)                                                                                                                                                                                                                                                                                           |
| Order Mesogastropoda (Thiele, 1925)                                                                                                                                                                                                                                                                                         |
| Family Aporrhaidae (Morch, 1852)                                                                                                                                                                                                                                                                                            |
| Drepanocheilus (Meek, 1876)                                                                                                                                                                                                                                                                                                 |
| <ul> <li><sup>1</sup> - Classification follows Speden (1970)</li> <li><sup>2</sup> - Classification follows Walaszczyk and Cobban, 200</li> <li><sup>3</sup> - Classification follows Besnosov and Michailova, 1991; Larson <i>et al.</i>, 1997</li> <li><sup>4</sup> - Classification follows Abdel-Gawad, 1986</li> </ul> |





|                | Protoconch &<br>Neanoconch | Juvenile                                       | Adult                                                                         |
|----------------|----------------------------|------------------------------------------------|-------------------------------------------------------------------------------|
| Baculites      | Planispiral                | Orthoconic                                     | Orthoconic                                                                    |
| Hoploscaphites | Planispiral                | Planispiral<br>(moderately<br>inflated)        | J-shaped or U-shaped chamber                                                  |
| Anaklinoceras  | Planispiral                | Turritellid spire                              | Inverted U-shaped<br>chamber (A. gordiale)<br>or planispiral (A.<br>reflexum) |
| Axonoceras     | Planispiral                | Planispiral<br>(inflated), separated<br>whorls | Planispiral (inflated),<br>separated whorls                                   |
| Placenticeras  | Planispiral                | Planispiral<br>(compressed)                    | Planispiral<br>(compressed)                                                   |

TABLE 3—Morphology of Ammonites Investigated in this Study

Many of the types of ammonites found in the sampling sites for the *Baculites compressus* and *Baculites cuneatus* biozones exhibit vast changes in growth program across different growth stages. In others, the transition between growth stages is marked by changes in shell ornamentation alone.



#### CHAPTER 2. SHELL ALTERATION INVESTIGATION

#### 2.1 Previous Investigations of Molluscan Fossil Shell Alteration

#### 2.1.1. Rationale for Utilizing Minor Element Concentrations to Evaluate Shell

*Alteration:* Oxygen and carbon stable isotopes ratios recovered from mollusk shells are commonly used to reconstruct paleotemperature. Molluscan shells are used because they tend to be relatively common, are less susceptible to diagenetic alteration than bone apatite or bulk samples of rock because of their lower porosity (Constantz, 1986), generally secrete their shells in isotopic equilibrium with seawater (e.g., Bettencourt and Guerra, 1999; Ivany et al., 2003) and may be compared to Recent relatives or analogs to make paleoenvironmental inferences. In addition, the accretionary nature of molluscan growth makes sclerochronology, the focus of Chapter 3, possible. In mollusks, the  $\delta^{18}$ O ratio is interpreted as a reflection of paleotemperature, once adjustments have been made to account for the  $\delta^{18}$ O ratio of the ambient waters, which is a function of temperature, salinity, and, during icehouse intervals, the volume of water entrained in ice caps (Wright, 1987). Temperature decreases with heavier  $\delta^{18}$ O ratios in aragonitic shell according to the equation:

$$T = 21.8 - 4.69(\delta^{18}O \text{ arag} - \delta^{18}O \text{ w})$$
(1)

This equation uses isotopic ratios in terms of the Pee Dee Belemnite (PDB) standard (Grossman and Ku, 1986). The  $\delta^{13}$ C ratio depends on temperature, salinity, and the isotopic composition of dissolved inorganic carbon in the system (Grossman and Ku, 1986). Dissolved inorganic carbon is isotopically heaviest near the surface, due to



preferential uptake of  $\delta^{12}$ C by phytoplankton, and lightest in seafloor sediment pore waters. As temperature increases, the difference between the isotopic signatures of the molluscan shell and dissolved inorganic carbon (the carbon isotope enrichment) decreases in a linear fashion. Because the  $\delta^{13}$ C ratio of dissolved inorganic carbon is isotopically heavier than the  $\delta^{13}$ C ratios of molluscan shell, this means that at higher temperatures, heavier  $\delta^{13}$ C ratios result (Grossman and Ku, 1986).

Carbon isotope ratios in molluscan shell may be modified from seawater  $\delta^{13}$ C by exchange with metabolic  $CO_2$ , which tends to have an isotopic signature of -40% to -30‰, as evidenced by the trend toward lighter  $\delta^{13}$ C ratios in the muscle scar regions of the Nautilus shell (Auclair et al., 2004). There has also been also a metabolic effect documented for mollusks with respect to  $\delta^{18}$ O, with greater variation in  $\delta^{18}$ O for the surf clam Spisula (Ivany et al., 2003) during early ontogeny, and for the abalone Haliotis when rapidly repairing injured shell (Epstein et al., 1963). This effect may also be present in *Baculites* (Fatherree et al., 1998) and *Eutrephoceras* (Landman et al., 1983). A positive correlation between  $\delta^{18}O$  and  $\delta^{13}C$  suggests metabolic discrimination against heavier isotopes, while a negative correlation could indicate increased productivity due to higher temperatures (Mitchell et al., 1994). In some mollusks, such as Strombus and *Baculites*, with the onset of maturity,  $\delta^{13}$ C and  $\delta^{18}$ O trend simultaneously toward heavier values (Fatherree et al., 1998; Herbert, pers. comm., 2006). During spawning, shell precipitation slows (Elliot et al., 2003), so isotopic records are biased towards the temperatures of water when the organism is not spawning. Thus, a mollusk that spawns in summer may show mostly moderate and cold temperatures in its sclerochronologic record. A mollusk that spawns in summer but ceases precipitation of shell when



temperatures are below a certain threshold, which is reached in winter months, will show moderate temperatures.

When estimating paleoceanographic conditions from stable isotopes in fossil shell, it is imperative that the observed variation in the stable isotopes is due to paleoenvironment and/or metabolism, rather than post-depositional alteration. Defining "unaltered" shell presents a challenge to paleontologists and geochemists. Alteration may include dissolution and recrystallization. One sign of dissolution is the presence of holes in the individual crystals of the shell; another is the rounding of their edges (Buchardt and Weiner, 1981; Schmidt, 1997). Recrystallization produces a "blocky" crystal texture (Schmidt, 1997) or fusion of individual aragonitic platelets (Buchardt and Weiner, 1981). Mineralogical impurities may also grow upon or adsorb to the shell. Common mineralogical impurities include the calcite spar and gypsum crystals appearing on ammonite shell witnessed by Buchardt and Weiner (1981), the pyrite noted by Landman et al. (1983) in *Eutrephoceras* shell, and the chert and rhombohedral calcite crystals observed by Elorza and García-Garmilla (1996) in the void spaces of *Inoceramus* shell.

Minor element analysis measures the concentration of chemical elements within the shell. Some elements, such as Fe, Mg, Mn, and Sr, substitute into the crystal lattice of aragonite or calcite. Others, such as K and Na, either reside in interstitial spaces in the crystal lattice or adsorb to its exterior (Dodd, 1967). Analyses are usually performed on an electron microprobe or an ICP system. The electron microprobe detects X-ray radiation produced when electrons bombard a thin section, while the ICP-OES system detects the wavelength of radiation produced by interaction of a plasma beam with



cations in solution. Minor element analysis was selected for this study because:

- 1. Minor element analysis has the potential to reveal the source of alteration, such as exchange with meteoric water or precipitation of secondary cements;
- 2. The concentrations of minor elements, particularly Mg, K, Na, and Fe, may be altered in shells that show no evidence of recrystallization (Ragland et al., 1979);
- A large body of molluscan minor element data exists for comparison (e.g., Brand, 1986; Pagani and Arthur, 1998;Dutton et al., 2002); and
- The minor elements of Sr, Mg, and Na have experimentally determined relationships with temperature and salinity that may be applicable to this study.

Because the only elements of interest are cations that substitute into the aragonite crystal structure or form the cations of secondary minerals, the ICP-OES method was selected. Seven elements were then selected for, based upon prior research: aluminum, potassium, iron, manganese, magnesium, sodium, and strontium.

### 2.1.2. Studies Utilizing Minor Elements as a Proxy for Shell Alteration:

Concentrations of potassium and sodium are believed to reflect seawater compostion. White (1979) established that mollusks coprecipitate potassium and sodium in equilibrium with seawater (as cited in Brand, 1986). In the oyster *Crassostrea*, there is a statistically significant linear correlation between salinity and sodium concentration in the precipitated shell (Rucker and Valentine, 1961). Sodium content in *Crassostrea* valves is ~3000 ppm for seawater of normal salinity, but is ~2500 ppm for seawater with a salinity of 15‰. The salinity-sodium relationship is supported by the presence of similar Na/Ca ratios among different genera of ammonites that presumably lived in the same vertical level of the water column (Whittaker et al., 1986). However, whether the



Na/Ca ratio in cephalopod mollusks reflects true salinity may be debatable. There is no correlation between Na/Ca and stable isotopes in the Whittaker et al. (1986) study, which are influenced, albeit indirectly, by salinity. Of course, the study location (in the centernorth of the Western Interior Seaway) may not have experienced sufficient salinity fluctuations to produce fluctuations in Na/Ca. Of more concern is a minor-element analysis of Recent *Nautilus* which found a discrimination factor of 2:1 for sodium, indicating a preference for sodium accumulation in the shell versus the concentration in seawater (Brand, 1983). These findings, however, have not been corroborated by study of other *Nautilus* species (Mann, 1992). Brand (1986) also describes a non-linear relationship between salinity and sodium in Recent and fossil aragonitic mollusks:

$$S = -5.769 \ln(A) + 28.380$$
<sup>(2)</sup>

Salinity S is given in parts per thousand  $\pm$  0.5, and A is the ratio of ppm Sr / ppm Na, or the geometric mean of such ratios. The use of strontium is empirically derived, and appears to correct for the genus-level variation in Na discrimination. Strontium and, to a lesser extent, sodium may be depleted during diagenesis; other elements which are typically enriched during diagenesis can be used to identify specimens that could produce questionable paleosalinities. The elements manganese, magnesium, and iron are all present in meteoric water at 2-4 times the level of seawater, so can be used as proxy for diagenetic alteration by exchange with meteoric water (Veizer and Fritz, 1976). For unaltered specimens, the covariance of magnesium with sulfur in the bivalve *Mytilus edulis* suggests that the organic matrix contains a significant amount of magnesium (Rosenburg and Hughes, 1991). Higher magnesium concentrations are also correlated with faster shell precipitation in this bivalve, suggesting variation of the element with



metabolism. The average concentrations of magnesium in molluscan shell vary significantly by taxonomic class (Turekian and Armstrong, 1960) and by species in *Nautilus* (Mann, 1992).

The strontium concentration of aragonitic molluscan shell has been correlated with many different environmental and physiological factors. A decrease in strontium, for instance, has been correlated with all of the following:

- A decrease in salinity along an exponential relationship that can be approximated as linear above salinities of 20‰. This trend is based on values from a variety of Recent aragonitic bivalves and gastropods, compiled by Dodd and Crisp (1982).
- An increase in salinity for individual *Neomidion* bivalves living in a Jurassic estuary (Holmden and Hudson, 2003).
- A slowing of growth rate and/or metabolic effects in the Eocene bivalve Venericardia and gastropod Clavilithes (Purton et al., 1999).
- Species-specific differences, rather than environmental or phylogenetic gradients, as in Recent *Nautilus*
- 5) A decrease in the  $\delta^{18}$ O ratio, implying an increase in temperature and the potential utility of strontium in paleothermometry for the Antarctic Eocene bivalve *Cucullaea* (Dutton et al., 2002).
- A decrease in visually assessed shell quality (Buchardt and Weiner, 1981), and percent aragonite (Hallam and Price, 1966), indicating alteration.

All of these trends are superimposed on a ~1:5 discrimination factor for strontium



concentrations in seawater versus strontium concentrations in the aragonite of bivalves, gastropods, and *Nautilus* (Turekian and Armstrong, 1960; Brand, 1983).

Very little research done has been on aluminum concentrations in molluscan shell, perhaps because the concentrations are low, approaching the detection limits of the analytical techniques (Brand, 1983). Brand (1983) found that *Nautilus* shell contains 0-30 ppm of aluminum. Unaltered inoceramid shell, according to Elorza and García-Garmilla (1996), is ~0.2% Al<sub>2</sub>O<sub>3</sub>. Given the paucity of information about aluminum, this study will significantly add to the existing data on this element. By far the most extensive data has been collected on magnesium and strontium concentrations, and these elements display complex, various relationships for different mollusks. With additional research, such complexities may be revealed for other minor elements included in molluscan shell.

#### 2.2 Methods

2.2.1 Selection of Samples: Samples for the fossil shell alteration investigation were taken in groups, here called "suites," that each addressed particular multiple working hypotheses. The hypotheses, taken primarily from previous research on shell preservational issues in Western Interior Seaway fossils, are as follows:

(1) Shell preserved directly in shale will be more pristine than shell preserved in concretions, which may be chemically altered during the dissolution and precipitation associated with concretion formation. An alternative hypothesis is that shell preserved within concretions will be less altered than shell preserved in shale, because the concretion is impermeable to groundwater.

(2) Ammonite phragmacone will be less altered than ammonite septa, because of



the tendancy for cements to form in the interior of the ammonite shell. An alternative hypothesis is that ammonite phragmacone will be more altered, because it is on the exterior of the shell and could thus be exposed to more groundwater and/or surface water.

- (3) Shell that is white to beige in color, with iridescent nacre, will be the most pristine. As in Recent molluscan shells, slight variation in color from that noted above may indicate optimal preservation for different genera.
- (4) Molluscan shell will have distinct minor element and isotopic signatures from the surrounding matrix (shale, siltstone, or concretion), and from crystalline cements precipitated within the shell. Progressively more diagenetically altered shell material will have minor element and isotopic signatures intermediate between unaltered shell and the cement itself.
- (5) Isotopic signatures will cluster by genus, and allow for a classification of mollusks as inhabiting deep-water, intermediate-water, or surface-water masses. Certain heteromorph ammonites may display two modes of life, changing habitat during ontogenetic changes in morphology.
- (6) Isotopic signatures will display a shift between Kremmling, Colorado, specimens and Trask and Game ranches, South Dakota, specimens, due to differences in temperature and/or salinity.

To test hypothesis 1, a "Mode of Preservation" suite was developed. This suite included specimens of the same genus (*Placenticeras, Inoceramus, Baculites*, and *Nymphalucina*) preserved in shale and calcareous concretions. Shale-concretion pairs of *Baculites* and *Inoceramus* were selected from a single locality: the Game Ranch.



Limitations in the collected material meant that this was impossible for all genera, and lithologic pairs had to be constructed using multiple localities. One sample was taken from each of twenty specimens (ten shale-concretion pairs). Care was taken to select specimens for each pair that were similar in color and shell thickness, and sample these at the same point in ontogeny.

To address hypothesis 2, a "Shell Sampling Location" suite was developed. This suite included specimens of three ammonite genera (*Placenticeras, Baculites, and Hoploscaphites*). One sample was taken from a septum of each specimen and another from the adjacent phragmacone, for a total of twenty samples.

To investigate hypothesis 3, twenty specimens from each locality were analyzed, for a total of sixty specimens in the "Shell Color Suite". Genera represented included three ammonites (*Placenticeras, Baculites*, and *Hoploscaphites*), three bivalves (*Anomia, Nymphalucina*, and *Inoceramus*), and two gastropods (*Anisomyon* and *Drepanocheilus*). Two to five specimens of different shell colors were selected for each genus at each location, depending on available specimens. A single sample was taken from each specimen, at an equivalent point in ontogeny for specimens of each genus.

To test hypothesis 4, a 35-specimen "Cementation Suite" was assembled. Of this suite, specimens 1-10 were from Kremmling, specimens 11-15 were from Game Ranch, and the remainder were from Trask Ranch. Four types of samples were taken: ammonite phragmacone shell (from *Placenticeras*, *Baculites*, and *Hoploscaphites*), matrix (concretion or siltstone), cements precipitated in the cavities of the shell, and calcitic material found on the exterior of the shell. Each specimen contained two or more of these materials, with one sample taken of each material, for a total of 111 samples.



For hypotheses 5 and 6, the combined data set was used. As seen in Table 4, this includes over 100 ammonite samples: 59 *Baculites* samples, 24 *Placenticeras* samples, and 22 *Hoploscaphites* samples. The combined data set also contains bivalve samples (18 from *Inoceramus*, 6 from *Nymphalucina*, and 4 from *Anomia*) and gastropod samples (2 from *Anisonmyon* and 3 from *Drepanocheilus*).

2.2.2 Treatment of Samples: Three techniques were used to prepare samples for the shell-alteration investigation. Whenever possible, shell was removed intact, using laboratory tweezers and similar implements. Target sample size was the equivalent of a square 2-3 mm on each side. For particularly "promising" specimens – ammonites with clean, irridescent shell displaying growth lines and a total shell thickness of 0.5 mm or greater – a second, adjacent sample was taken and sent to the American Museum of Natural History for scanning electron microscopy and to SUNY Stony Brook for tstrontium isotopic analysis. When shell could not be removed intact, it was scaped from the specimen using a curved pick, with care taken to sample the entire thickness of shell. Different layers within a shell, due to differing crystal structures, different temperatures at the time of precipitation, and/or metabolic effects at time of deposition, may show different isotopic signatures. For example, the bivalve *Pecten* shows strongly depleted  $\delta^{18}$ O and  $\delta^{13}$ C in surficial samples relative to samples which included the entire thickness of the shell (Mitchell et al., 1994). In ammonites, differences in isotopic composition with respect to sampling location have been shown for *Baculites compressus* (Forester et al., 1977; Fatherree et al., 1998). Surficial recrystallization or cement samples were scraped from the shells they were preserved upon. Cement and concretion samples were taken using a Dremel® variable-speed drill fitted with a diamond-coated bit. All



specimens were ground into a uniform fine powder using a mortar and pestle, made of agate to minimize contamination.

2.2.3 Mass Spectrometer Analysis: Subsamples of 60-100 µg were measured on a microbalance into small glass vials. These specimens were dried in a laboratory oven at 70 °C for at least one week to remove moisture. The specimens were transferred to reaction vials for a target mass of 35-80  $\mu$ g, which were then reacted with 100% phosphoric acid added to each reaction vial within the carbonate preparation device of the mass spectrometer. The mass spectrometer used in this study is a ThermoFinnigan Delta Plus XL dual inlet mass spectrometer with an in-line Kiel III Carbonate Preparation Device, and resides at the Center for at the College of Marine Sciences, University of South Florida, St. Petersburg, Florida. Six replicates of the NBS19 standard, taken as  $\delta^{13}C = 1.95\%$  and  $\delta^{13}C = -2.20\%$  with respect to PDB, were included in each mass spectrometer run to determine the analytic uncertainty. Analytical uncertainty, at the 95% confidence level, was  $\pm 0.03\%$  for the  $\delta^{13}$ C values and  $\pm 0.08\%$  for the  $\delta^{18}$ O values. Data from samples producing a signal of less than 600mv, which usually results from carbonate mass  $<20 \mu g$ , were discarded and, when possible, rereun. All values are reported with respect to the Pee Dee Belemnite.

2.2.4 ICP Analysis: Subsamples of 100-200 µg were placed directly into polyethylene tubes used for the analysis. Once all the samples were prepared, 2.0 mL of 2% HNO<sub>3</sub> was added and the samples were inverted to ensure the entire sample dissolved. The Perkin Elmer Optima 4300DV dual view ICP-OES, housed at the same facility as the mass spectrometer, was calibrated with a series of four serially diluted multi-element concentration standards, commercially available from SCP-Science. All



minor element samples were run as a single batch to minimize analytical uncertainty, which was better than 1% relative standard deviation for all values. Table 5 lists the detection limits for the elements focused upon in this study.

2.2.5 Data Processing: Minor element concentrations were received in parts per million (ppm) and converted to atomic ratios with respect to calcium. The ratios, given in mMol/Mol Ca, were obtained by dividing the weight percent of the minor element, divided by its atomic mass, by the weight percent of calcium, divided by its atomic mass. All statistical calculations were performed with the minor element ratios, but the concentrations of minor elements in ppm were needed for paleosalinity calculations using equation 2. This equation for paleosalinity, from Brand (1986), was selected because it was derived for both gastropod and bivalve mollusks, from a variety of habitats, fossil and Recent. A correction factor, derived from data on Recent Nautilus in the wild, was applied to the equation to compensate for the higher concentrations of sodium in cephalopods than bivalves or gastropods living in the same habitat (Dodd, 1967).

Stable isotope concentrations were received in per-mil notation, with respect to the Pee Dee Belemnite (PDB) standard. A value of  $\delta^{18}O = -5\%$  means that the shell has a 5% lighter  $\delta^{18}O$  ratio than the PDB standard; i.e., it has a greater proportion of  $\delta^{13}C$  than the standard. Paleotemperature was calculated using equation 1, Grossman and Ku's molluscan aragonite temperature correlation.after first applying to determine the  $\delta^{18}O$  value of the waters surrounding the mollusk using Equation 3:

$$S_{(WIS)} = [1 - (\delta_{w(WIS)} - \delta_{w(ocean)}))/(\delta_{f} - \delta_{w(ocean)})] \times S_{(ocean)}$$
(3)

Constants for  $\delta^{18}$ O of the open ocean were  $\delta_{w(ocean)} = -1.22\%$  PDB and  $S_{(ocean)} = 34.3$ , values calculated from models of Earth without polar ice caps (Schmidt, 1997).



Grossman and Ku's equation is likewise appropriate because all molluscan shell samples used in this study, with the exception of calcitic *Anomia*, for which no unaltered specimens were found, were aragonitic. *Inoceramus*, which contains both a prismatic calcitic layer and aragonitic nacreous layer, was sampled only in the aragonite.



|                                  | Mode of<br>Preservation<br>Suite | Shell<br>Testing<br>Location<br>Suite | Shell<br>Color<br>Suite | Cementation<br>Suite | Total<br>Number of<br>Samples |
|----------------------------------|----------------------------------|---------------------------------------|-------------------------|----------------------|-------------------------------|
| <i>Baculites</i> phragmacone     | 5                                | 7                                     | 15                      | 25                   | 52                            |
| Baculites septa                  |                                  | 7                                     |                         |                      | 7                             |
| <i>Placenticeras</i> phragmacone | 6                                | 2                                     | 10                      | 4                    | 22                            |
| Placenticeras<br>septa           |                                  | 2                                     |                         |                      | 2                             |
| Hoploscaphites phragmacone       |                                  | 1                                     | 11                      | 9                    | 21                            |
| Hoploscaphites<br>septa          |                                  | 1                                     |                         |                      | 1                             |
| Inoceramus shell                 | 5                                |                                       | 13                      |                      | 18                            |
| <i>Nymphalucina</i> shell        | 4                                |                                       | 2                       |                      | 6                             |
| Anomia shell                     |                                  |                                       | 4                       |                      | 4                             |
| Anisomyon shell                  |                                  |                                       | 2                       |                      | 2                             |
| Drepanocheilus<br>shell          |                                  |                                       | 3                       |                      | 3                             |
| Concretion                       |                                  |                                       |                         | 34                   | 34                            |
| Cementation                      |                                  |                                       |                         | 33                   | 33                            |
| Exterior<br>Crystallization      |                                  |                                       |                         | 6                    | 6                             |
| Total Number of<br>Samples       | 20                               | 20                                    | 60                      | 111                  | 211                           |

# TABLE 4--Specimen Suites Used in Shell Alteration Investigations

The 211 samples investigated in the shell alteration portion of this study are divided into four suits, each with its own hypothesis to test. Because the focus of most hypotheses is on ammonites, they are overrepresented in the dataset compared to *Inoceramus*, the only numerous bivalve genus for the sampling locations. Nonetheless, a variety of genera are represented by the combined dataset.



|              | Al      | Ca      | Fe      | K       | Mg      | Mn      | Na      | Sr      |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
|              | 206 152 | 215.007 | 220.204 | 7(( 100 | 205 212 | 257 (10 | 500 500 | 407 771 |
| Wavelength,  | 396.153 | 315.887 | 238.204 | 766.490 | 285.213 | 257.610 | 589.592 | 407.771 |
| nm           |         |         |         |         |         |         |         |         |
| Detection    | 1.60    | 5.87    | 0.35    | 0.39    | 0.38    | 0.05    | 1.08    | 0.01    |
| Limit (ppm)  |         |         |         |         |         |         |         |         |
| Limit of     | 5.35    | 19.56   | 1.17    | 1.29    | 0.68    | 0.16    | 3.53    | 0.03    |
| Quantitation |         |         |         |         |         |         |         |         |
| (ppm)        |         |         |         |         |         |         |         |         |

**TABLE 5**-Limits for ICP-OES System.

Limits of quantitation for the ICP-OES system used in this study were approached for analyses of Fe, Mn, Mg, Sr, and Al. These values are the concentrations below which no numerical data analysis should be performed. All data with minor element concentions below the limit of quantitation were omitted from statistical analyses and regression trendlines. Limits of detection express how much of the element must be present in the sample to produce results. This threshold was crossed most frequently with Al.



#### 2.3 Results

2.3.1 Mode of Preservation: Results for the "Mode of Preservation" suite were obtained for all twenty samples (see Appendices A and B). As Figure 2 displays, most of the samples cluster with  $\delta^{18}$ O ratios ranging from 0.50‰ to 5.00‰, with respect to PDB. The  $\delta^{13}$ C values range from -5‰ to 6‰. The *Nymphalucina* preserved in a Trask Ranch concretion is an exception with  $\delta^{18}$ O = -9.07‰ and  $\delta^{13}$ C = -13.0‰. Likewise, the *Placenticeras* samples from Kremmling, Colorado, concretions were anomalous with  $\delta^{18}$ O ranging from -15‰ to -20‰ and  $\delta^{13}$ C from -7.44‰ to -3.99‰.

In total, four of the five outliers were samples from concretions. A t-test of independent samples with level of significance = 0.05 reveals significantly lighter  $\delta^{18}$ O in concretions and a strong relationship between concretions and lighter  $\delta^{13}$ C values (Table 6). These statistical findings support the visual observation that, within the cluster of shell samples on the isotope cross-plot, there appears to be no pattern in the relative position of shale and concretion points. Within the cluster of stable isotope data, the *Inceramus* samples show the isotopically heaviest carbon signature (mean  $\delta^{13}C = 3.47 \pm$ 2.44‰), along with the isotopically lightest oxygen signature (mean  $\delta^{18}O = -3.38 \pm$ 1.31‰). The *Inoceramus* found in Trask Ranch concretions had an isotopic signature closer to the *Inoceramus* found in Game Ranch shale than Game Ranch concretions. Conversely, the *Baculites* samples show the isotopically lightest carbon signature (mean  $\delta^{13}$ C = -0.73 ± 1.30‰), along with the isotopically heaviest oxygen signature (mean  $\delta^{18}$ O =  $-1.34 \pm 1.09\%$ ). The *Baculites* found in Trask Ranch concretions had isotopic signatures closer to the *Baculites* found in Game Ranch concretions than Game Ranch shale. The *Placenticeras* samples have similar carbon values (mean  $\delta^{13}C = -1.43 \pm$ 





0.43‰) as the *Baculites*, but intermediate oxygen values (mean  $\delta^{18}O = -2.58 \pm 1.19\%$ ) between the points for *Baculites* and *Inoceramus* specimens. While there are only two points for *Nymphalucina*, they are closest to the light-carbon, heavy-oxygen *Baculites*.

As in the isotopic data, in the minor element data, the outliers were from concretions. All minor element concentration data shown in Figures 3 and 4 is expressed in mMol/Mol ratios with calcium. The Kremmling *Placenticeras* and the Trask Ranch Nymphalucina represent outliers depleted in strontium and enriched in magnesium relative to Recent mollusks (Figure 3). An *Inoceramus* shell sample was slightly enriched in magnesium (3.44 mMol/Mol) and a Baculites sample from Trask Ranch was enriched in both strontium and magnesium relative to Recent aragonitic shell material (Buchardt and Weiner, 1981). Figure 4, a pair of radar charts, depicts minor element concentrations for all elements examined. Each axis of a chart records the concentration of an element, in mMol/Mol, with lines connecting all data points for a given sample. Enrichment outliers for aluminum, iron, manganese, and strontium were present for the concretion samples, but not for the shale samples (however, in the latter, no aluminum concentration data could be obtained due to concentrations below the analytical detection level). The outliers belong to four different samples, rather than to one sample that was highly altered. In both concretions and shale, the mean K/Ca ratio was ~0.8 mMol/Mol, Na/Ca ratio was ~16 mMol/Mol, and Sr/Ca ratio was ~3 mMol/Mol. The concretions had higher mean Fe/Ca ratios  $(8.3 \pm 1.4 \text{ mMol/Mol vs.} 1.12 \pm 1.06 \text{ mMol/Mol})$ , Mn/Ca ratios  $(5.1 \pm 2.4 \text{ vs. } 1.69 \pm 1.23 \text{ mMol/Mol})$ , and Mg/Ca ratios  $(6.2 \pm 0.9 \text{ vs. } 0.88 \pm 0.94 \text{ mMol/Mol})$ mMol/Mol). The differences in magnesium and iron were the only statistically significant trends in the minor isotope ratios, as evaluated by one-tailed t-tests of



independent samples, 0.05 level of significance, reported in Table 2. The lower mean concentration of manganese in the shale samples was nearly significant, with t = -1.7 (critical t = -1.753) and the higher mean concretion of sodium in the shale samples was also nearly significant, with t = 1.4 (critical t = 1.746).



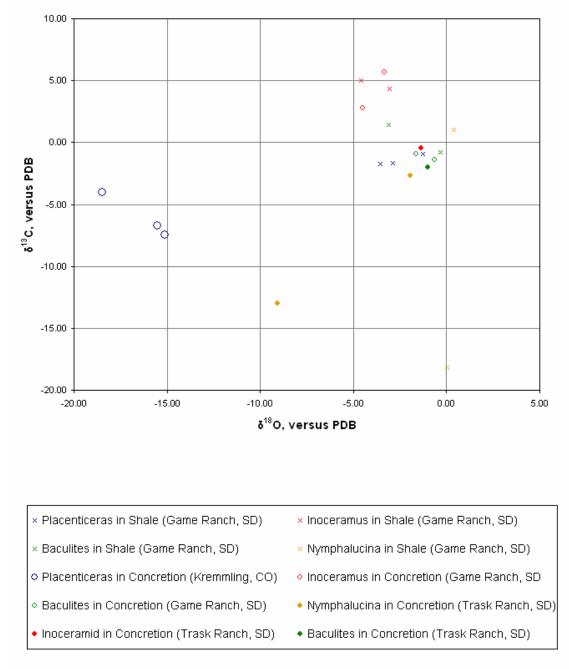



FIGURE 2—Mode of Preservation Stable Isotope Cross-Plot

The plot of oxygen and carbon stable isotopes for the "Mode of Preservation" shell alteration suite, with color denoting genus and symbol type denoting location, clearly shows outlier data points for specimens preserved in concretions.

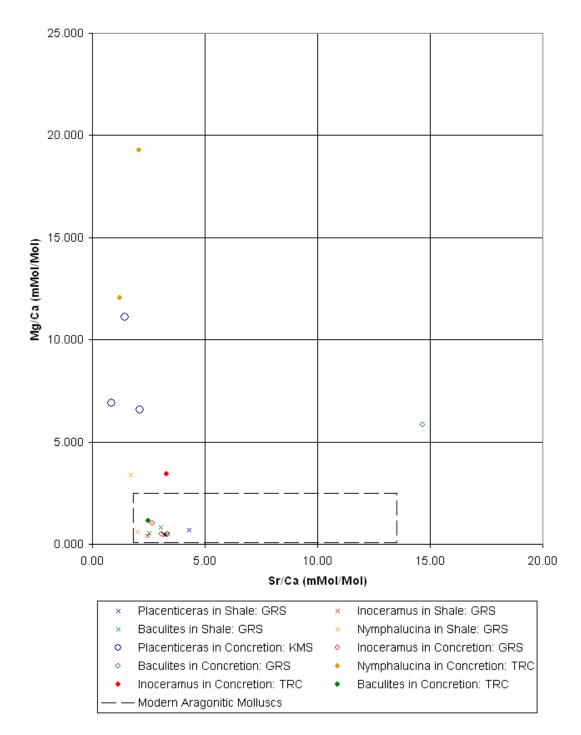


| Alternate<br>Hypothesis                                          | Type of<br>Test                                   | Ν          | Mean,<br>± standard<br>deviation   | Calculated<br>Value(s) | Critical<br>Value (95%<br>confidence) | Result                  |
|------------------------------------------------------------------|---------------------------------------------------|------------|------------------------------------|------------------------|---------------------------------------|-------------------------|
| Significantly<br>lighter mean $\delta^{13}$ C in<br>concretions? | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: -1.28± 6.81<br>c: -2.74 ± 5.07  | t = 1.35               | t = 1.75                              | H <sub>o</sub> retained |
| Significantly<br>lighter mean $\delta^{18}$ O in<br>concretions? | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: -2.04 ± 1.78<br>c: -6.60 ± 6.74 | t = 4.76               | t = 1.75                              | H <sub>o</sub> rejected |
| Significantly<br>lower mean<br>Fe/Ca in shale?                   | One-tailed t-<br>test<br>(independent<br>samples) | 6s,<br>11c | s: 1.12 ± 1.06<br>c: 8.3 ± 1.4     | t = -2.0               | $t = \pm 1.753$                       | H <sub>o</sub> rejected |
| Significantly<br>lower mean<br>K/Ca in shale?                    | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: 0.731 ± 0.855<br>c: 0.93 ± 0.20 | t = -0.64              | $t = \pm 1.746$                       | H <sub>o</sub> retained |
| Significantly<br>lower mean<br>Mg/Ca in shale?                   | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: 0.88 ± 0.94<br>c: 6.2 ± 0.9     | t = -2.8               | $t = \pm 1.746$                       | H <sub>o</sub> rejected |
| Significantly<br>lower mean<br>Mn/Ca in shale?                   | One-tailed t-<br>test<br>(independent<br>samples) | 6s,<br>11c | s: 1.69 ± 1.23<br>c: 5.1 ± 2.4     | t = -1.7               | $t = \pm 1.753$                       | $H_o$ retained          |
| Significantly<br>higher mean<br>Na/Ca in shale?                  | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: 17.2 ± 4.1<br>c: 14.0 ± 3.0     | t = 1.4                | $t = \pm 1.746$                       | $H_o$ retained          |
| Significantly<br>higher mean<br>Sr/Ca in shale?                  | One-tailed t-<br>test<br>(independent<br>samples) | 9s,<br>11c | s: 2.85 ± 1.69<br>c: 3.4 ± 0.74    | t = -0.43              | $t = \pm 1.746$                       | $H_o$ retained          |

TABLE 6—Summary Statistics for Mode of Preservation Suite

Summary statistics for the "Mode of Preservation" Suite show significantly lower Mg/Ca ratios in specimens preserved in shale and significantly lighter  $\delta^{18}$ O in specimens preserved in concretions. The null hypothesis, that there is no significant difference in the mean between shale and concretion subsets, was retained for all other tests. All isotope ratios reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium.





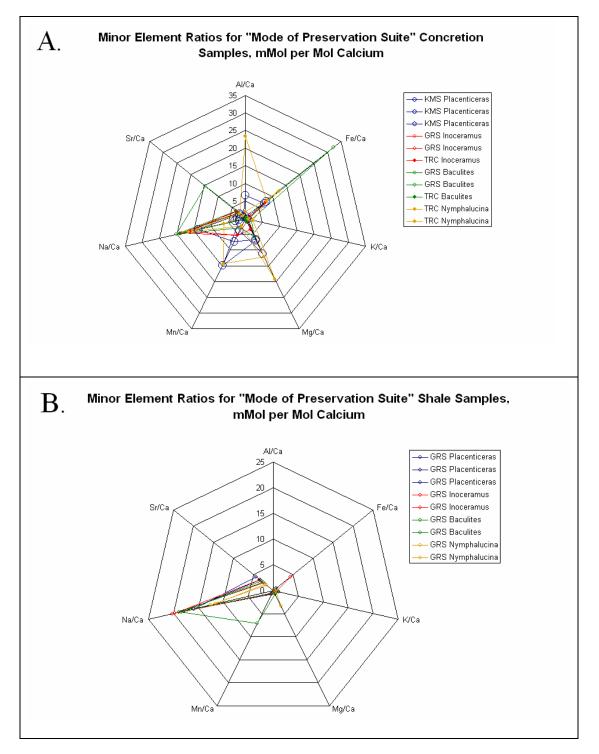



FIGURE 3-Sr/Ca and Mg/Ca Ratios for "Mode of Preservation" Suite

In the Sr/Ca-Mg/Ca minor element cross-plot, the majority of data points residing outside of the field for Recent aragonitic shell are from specimens in concretions. These points are enriched in magnesium relative to Recent aragonitic shell.







The minor element ratios for the concretion specimens show enrichment in iron, magnesium, and manganese relative to those taken from shale.



2.3.2 Shell Sampling Position: Minor element concentrations for the "Shell Sampling Position" suite were obtained for all twenty samples (ten phragmacone-septum pairs). Stable isotope results were obtained for eighteen of the samples (see Appendices A and B), with septum specimen 3S and phragmacone samples 2P unreliable, and therefore omitted, due to low mass spectrometer voltage, possibly from underweight samples. These results may be seen in tabular form within Appendices A and B.

In the stable isotope cross-plot (Figure 5), the data cluster by genus. The *Placenticeras* had the isotopically heaviest  $\delta^{13}$ C and the isotopically lightest  $\delta^{18}$ O, with -3.71‰ and -3.74‰, for the septum, and -2.91‰ and -2.67‰ for the phragmacone, respectively. The *Hoploscaphites* had a similar  $\delta^{18}$ O, but lighter  $\delta^{13}$ C, with -3.69‰, -8.36‰ for the septum, and -3.64‰ and -7.46‰ for the phragmacone, respectively. The isotopic signatures of the *Baculites* samples vary greatly, with mean  $\delta^{13}$ C and  $\delta^{18}$ O values of -6.22 ± 4.13‰ and -1.36 ± 2.35‰, respectively.

The values recorded from each specimen often proved vastly different. Three phragmacone and septum pairs (the *Hoploscaphites* and two *Baculites* specimens from the Trask Ranch) do have similar isotopic values; the remaining seven do not. These pairs were analyzed using a statistical paired t-test for dependent samples, as shown in Table 7. At the 0.05 significance level, the difference in  $\delta^{13}$ C between septum and phragmacone samples taken from the same specimen may be explained by random chance. The difference in mean  $\delta^{18}$ O is significant at the 0.05 level, with  $\delta^{18}$ O from the phragmacones lighter than those from the septa. It should be noted that the mean  $\delta^{13}$ C value is influenced by a Trask Ranch *Baculites* phragmacone sample, at the bottom of Figure 6, which is a statistical outlier with respect to the other phragmacone samples.



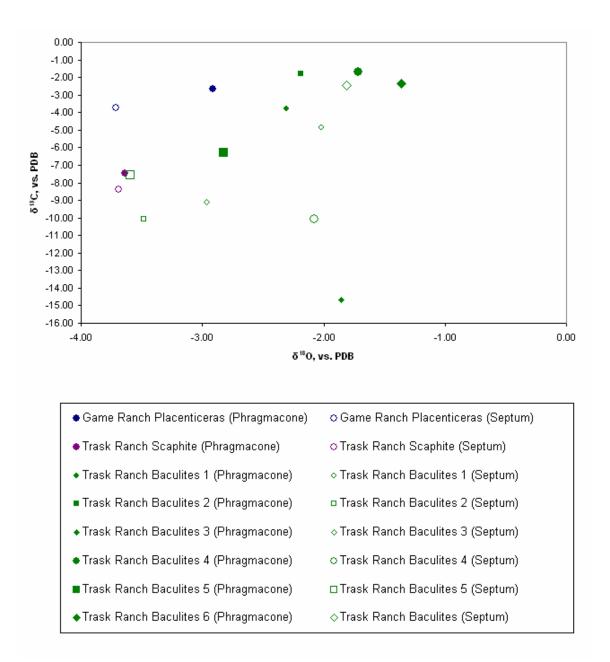
When the septum-phragmacone pair containing this point is removed, the t-score for the  $\delta^{13}$ C ratio increases, indicating a greater difference between phragmacone and septal samples, while the  $\delta^{18}$ O ratio decreases below the 0.05 level of statistical significance. In addition, the  $\delta^{13}$ C ratio of the phragmacone samples increases from -5.09 ± 4.41‰ to -  $3.72 \pm 2.29\%$  and the  $\delta^{18}$ O ratio of the phragmacone samples increases from -7.03 ± 2.96% to -6.73 ± 3.07‰. While the statistical dependence of the samples upon each other precludes the ability to apply a t-test to the data subsets consisting of all phragmacone and all septal samples, it is clear from the means and the distribution of points in Figure 5 that the septal samples tend to have lower  $\delta^{13}$ C values.

In the graph of Sr/Ca versus Mg/Ca ratios (Figure 6), only two data points fall within the limits established for Recent aragonitic shell. These points are both phragmacone samples: one a *Placenticeras* from Game Ranch and the other a *Hoploscaphites* from Trask Ranch. The septum of the aforementioned *Placenticeras* is an outlier strongly enriched in strontium (Sr/Ca = 16.4 mMol/Mol), while all other samples have Sr/Ca ratios between 2 and 5 mMol/Mol, values on the lower end of the range for Recent aragonitic shell. There is no difference between Sr/Ca ratios between corresponding septal and phragmacone samples to the 0.05 level of significance with a two-tailed t-test of dependent samples (Table 7). Likewise, there is no significant difference in Mg/Ca ratio, though in this instance the t-score is much higher (t = -1.9 versus critical t =  $\pm 2.262$ ). The greater t-score is expected because of the high standard deviation of the Mg/Ca ratios within the "Shell Testing Location" suite and the large span of data points along the y-axis of Figure 6. Most of the data points in the suite are relatively enriched in magnesium, up to Mg/Ca = 48.9 mMol/Mol, without any statistical



www.manaraa.com

outliers.


Statistical outliers do exist for the Fe/Ca, Na/Ca, and Sr/Ca ratios of the Kremmling, Colorado, *Placenticeras* sample, the first two ratios for both phragmacone and septum and the last ratio for the septum alone. Another outlier was the enriched Sr/Ca of the Game Ranch*Placenticeras* septum. These outliers may be seen graphically as the endpoints on the radar diagrams in Figure 7. Interestingly, the *Placenticeras* data that contain the statistical outliers also show the greatest mismatch between the chemical content of phragmacone and septal samples within a pair. All other pairs show similar chemical profiles, with peaks greater than 5 mMol/Mol for magnesium, sodium and, for the Colorado specimens and South Dakota *Hoploscaphites*, manganese. Small peaks, with concentrations less than or equal to 10 mMol/Mol Ca, also occur for iron in the South Dakota specimens. When the large Fe/Ca ratio of the Kremmling *Placenticeras* is removed from the data, a statistically significant difference in the Fe/Ca ratio for phragmacone-septum pairs emerges. Figure 7 reveals the difference to be a relative enrichment of iron for the septal samples.

Comparing the differences in isotopic ratios to the minor element data, several trends emerge. First, specimens with enriched magnesium and/or manganese -- such as the Game Ranch *Placenticeras* and the second, third, and fourth Trask Ranch *Baculites* – also had large differences between the isotopic signatures of their septa and phragmacones. However, the Trask Ranch *Hoploscaphites* specimen was enriched in magnesium but did not display a substantial difference between phragmacone and septal isotopic signatures and the fifth Trask Ranch *Baculites* specimen showed a fairly wide span of values on the isotope cross-plot without high magnesium or manganese



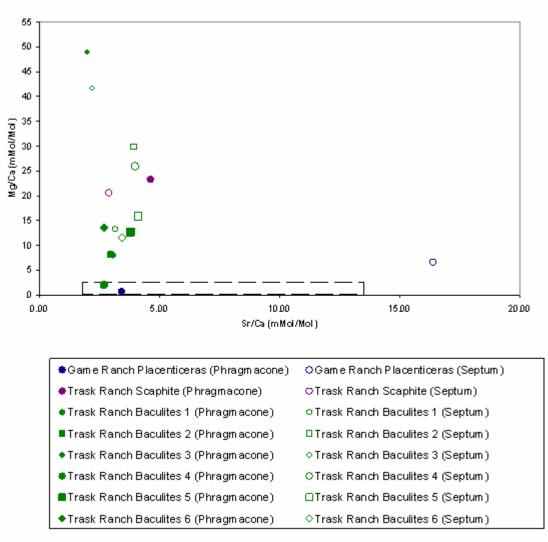
concentrations. The similarity in minor element distributions (overall shape of the radar chart polygon) is a better predictor of isotopic similarity than the numeric concentrations of minor elements. The best matches, as seen in Figure 7, are the Trask Ranch *Hoploscaphites* and the first and sixth Trask Ranch *Baculites*, and these are also the pairs that are closest together on the isotope cross-plot. The poorly-matched septal and phragmacone samples of the Game Ranch *Placenticeras* specimen correlate with a moderately high difference in  $\delta^{13}$ C and  $\delta^{18}$ O. The Trask Ranch *Baculites* samples that were isotopically different had the same minor element distribution, with peaks in Fe, Mg, and Na, but the phragmacone and septal samples within a pair differed in their concentrations of these elements. Unfortunately, no isotopic data was available for the Kremmling specimens, which matched poorly in minor element distribution and would have provided useful comparisons.





#### FIGURE 5—Shell Sampling Position Stable Isotope Cross-Plot

This plot shows oxygen and carbon stable isotopes for the "Shell Sampling Position" shell alteration suite, with color denoting genus, symbol shape denoting location, and symbol fill denoting septum versus phragmacone sampling. Quite frequently, phragmacone-septum pairs are isotopically different from each other.




| Alternate                 |            |      | Means, ± standard    | Calculated | Critical        | Result    |
|---------------------------|------------|------|----------------------|------------|-----------------|-----------|
| Hypothesis                | Test       | 0    | deviations           | Value(s)   | Value (0.05)    |           |
| Difference in             | Paired     | 8s,  | $p: -5.09 \pm 4.41$  | t = 1.21   | $t = \pm 2.365$ | Ho        |
| $\delta^{13}$ C values of | t-test     | 8p   | $s: -7.03 \pm 2.96$  | 1.77       |                 | retained; |
| septum-                   | (dependent |      | Without outlier:     | t = 1.77   | $t = \pm 2.571$ | Ho        |
| phragmacone               | samples)   | 6s,  | p: $-3.72 \pm 2.29$  |            |                 | retained  |
| pairs?                    | D : 1      | 6p   | $s: -6.73 \pm 3.07$  |            |                 |           |
| Difference in             | Paired     | 8s,  | p: $-2.35 \pm 0.74$  | t = 3.04   | $t = \pm 2.365$ | Ho        |
| $\delta^{18}$ O values of | t-test     | 8p   | s: $-2.92 \pm 0.82$  |            |                 | rejected; |
| septum-                   | (dependent | 6    | Without outlier:     | t = 2.02   | $t = \pm 2.571$ | Ho        |
| phragmacone               | samples)   | 6s,  | p: $-2.42 \pm 0.77$  |            |                 | retained  |
| pairs?                    | D : 1      | 6p   | $s: -2.91 \pm 0.89$  | 10.00      |                 |           |
| Difference in             | Paired     | 8p,  | p: $4.633 \pm 4.579$ | t = -12.82 | $t = \pm 2.365$ | Ho        |
| Al/Ca of septum-          | t-test     | 8s   | s: $6.047 \pm 6.200$ |            |                 | rejected; |
| phragmacone               | (dependent | -    | Without outliers:    | t = -7.590 | $t = \pm 2.447$ | Ho        |
| pairs?                    | samples)   | 7s,  | $p: 2.960 \pm 1.921$ |            |                 | rejected  |
| <b>D</b> : 00             |            | 7p   | s: 4.318 ± 2.428     |            |                 |           |
| Difference in             | Paired     | 10p, | p: $6.1 \pm 11.5$    | t = -1.3   | $t = \pm 2.262$ | Ho        |
| Fe/Ca of septum-          | t-test     | 10s  | s: 8.6 ± 7.4         |            |                 | retained; |
| phragmacone               | (dependent |      | Without outliers:    | t = 2.64   | $t = \pm 2.571$ | Ho        |
| pairs?                    | samples)   | 8p,  | p: $2.80 \pm 3.05$   |            |                 | rejected  |
|                           |            | 8s   | s: 5.64 ± 2.51       |            |                 |           |
| Difference in             | Paired     | 10p, | p: $0.07 \pm 0.03$   | t = -1     | $t = \pm 2.262$ | Ho        |
| K/Ca of septum-           | t-test     | 10s  | s: $0.1 \pm 0.2$     |            |                 | retained; |
| phragmacone               | (dependent | 0    | Without outliers:    | t = 0.8    | $t = \pm 2.306$ | Ho        |
| pairs?                    | samples)   | 8p,  | p: $0.07 \pm 0.02$   |            |                 | retained  |
| D:00 :                    | D : 1      | 8s   | $s: 0.07 \pm 0.03$   |            |                 |           |
| Difference in             | Paired     | 10p, | p: $14.5 \pm 13.9$   | t =        | $t = \pm 2.262$ | Ho        |
| Mg/Ca of                  | t-test     | 10s  | $s: 20.4 \pm 10.5$   | -1.9       | 10.000          | retained; |
| septum-                   | (dependent | 0    | Without outliers:    | . 15       | $t = \pm 2.306$ | Ho        |
| phragmacone               | samples)   | 8p,  | p: $15.7 \pm 14.8$   | t = -1.5   |                 | retained  |
| pairs?                    | D 1        | 8s   | $s: 21.5 \pm 10.5$   | 1.1.6      |                 |           |
| Difference in             | Paired     | 10p, | p: $4.3 \pm 5.7$     | t = -1.16  | $t = \pm 2.262$ | Ho        |
| Mn/Ca of                  | t-test     | 10s  | s: $5.5 \pm 4.0$     | 1.01       | 1 12 200        | retained; |
| septum-                   | (dependent | 0    | Without outliers:    | t = 1.81   | $t = \pm 2.306$ | Ho        |
| phragmacone               | samples)   | 8p,  | $3.5 \pm 4.9$        |            |                 | retained  |
| pairs?                    | D : 1      | 8s   | $4.8 \pm 4.2$        |            |                 |           |
| Difference in             | Paired     | 10p, | p: $19.8 \pm 12.6$   | t = -0.55  | $t = \pm 2.262$ | Ho        |
| Na/Ca of septum-          | t-test     | 10s  | $s: 22.7 \pm 11.9$   |            | 10.000          | retained; |
| phragmacone               | (dependent | 0    | Without outliers:    | t = 0.050  | $t = \pm 2.306$ | Ho        |
| pairs?                    | samples)   | 8p,  | p: $22.2 \pm 12.7$   |            |                 | retained  |
| D:00 :                    |            | 8s   | $s: 21.9 \pm 12.4$   |            |                 |           |
| Difference in             | Paired     | 10p, | p: $2.69 \pm 1.21$   | t =        | $t = \pm 2.262$ | Ho        |
| Sr/Ca of septum-          | t-test     | 10s  | s: $6.1 \pm 6.5$     | 1.6        |                 | retained; |
| phragmacone               | (dependent | 0    | Without outliers:    |            | $t = \pm 2.306$ | Ho        |
| pairs?                    | samples)   | 8p,  | p: 2.83± 1.14        | t = 0.855  |                 | retained  |
|                           |            | 8s   | s: 3.10 ± 1.04       |            |                 |           |

 TABLE 7 – Summary Statistics for "Shell Sampling Position" Suite

Significant relationships exist for  $\delta^{18}$ O, Al/Ca, and Fe/Ca. For other tests, the null hypothesis of no difference in means between septa and phragmcones is retained. All isotope ratios reported in ‰ versus PDB; all minor element ratios reported in mMol/Mol.





## FIGURE 6—Shell Sampling Position Sr/Ca-Mg/Ca Cross-Plot

Very few of the samples for the "Shell Sampling Position" suite fall within the Mg/Ca and Sr/Ca limits for Recent aragonitic shell. As in the isotopic data, the phragmacone and septum samples may differ in their chemical composition.



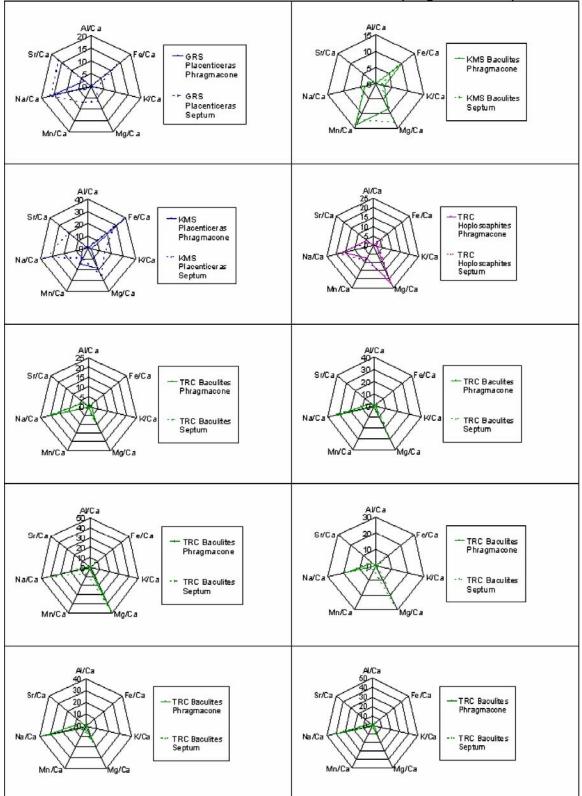



FIGURE 7—Radar Charts for Minor Elements in "Shell Sampling Position" Specimens

Most phragmacone-septum pairs share patterns in minor elements though amounts differ.



2.3.3 Shell Color Suite: Two aspects of shell color were investigated in this study: the presence or absence of an opalescent luster and the color of the shell. A suite of 60 specimens was assembled, with 20 samples per collection site and representatives of all genera (see Appendices A and B). For each genus at each location, specimens of at least two different colors were sampled. Twelve samples, including representatives of *Placenticeras*, *Baculites*, *Hoploscaphites*, and *Inoceramus*, could be classified as opalescent. These genera were also represented in non-opalescent shell, along with additional genera *Nymphalucina*, *Anomia*, *Drepanocheilus*, and *Anisomyon*. All genera in the study were thus represented in the "Shell Color" suite.

As Figure 8 illustrates, the majority of the samples from opalescent shells, including those from the opalescent 10YR3/6, opalescent 5Y8/9, opalescent 7.5YR6/7, and opalescent N9 color classes cluster between  $\delta^{13}$ C values ranging from 5‰ to -5‰ and  $\delta^{18}$ O values spanning 0‰ to -4‰ (See Table 8 for color designations). A single outlier is the Kremmling *Placenticeras* sample, with  $\delta^{18}$ O and  $\delta^{13}$ C values of -15.01‰ and -6.99‰, respectively. The non-opalescent shell samples show a greater range of values, but tend to cluster into two subsets as defined by  $\delta^{18}$ O. All of the members of the relatively  $\delta^{18}$ O-depleted cluster are from Kremmling (whereas only two members of the relatively  $\delta^{18}$ O-enriched cluster are). Therefore, the Colorado and South Dakota specimens were separated during statistical analysis (Tables 9 and 10). The  $\delta^{13}$ C and  $\delta^{18}$ O averages became heavier when the Kremmling points were removed, with an opalescent shell  $\delta^{13}$ C average of -2.08 ± 2.47‰ (versus -3.43 ± 3.97‰ when including Kremmling data) and  $\delta^{18}$ O average of -1.53 ± 1.95‰ (versus -2.27 ± 1.04‰). The non-



opalescent shell  $\delta^{13}$ C average was -1.64 ± 5.71‰ (versus -3.07 ± 5.38‰ when including Kremmling data), and the  $\delta^{18}$ O average was 3.61 ± 1.87‰ (versus -6.98 ± 5.22‰). In most instances, the standard deviation also decreases when the Kremmling data is removed, though this effect is more marked for the oxygen than carbon data. The one-tailed t-tests for independent samples calculated for the opalescent and non-opalescent shell reveal no significant differences in the  $\delta^{18}$ O or  $\delta^{13}$ C ratios. The extremely low  $\delta^{13}$ C t-score (0.011) for the South Dakota data suggests that the variation in the data was caused by the difference between South Dakota and Colorado isotopic signatures. However, the t-score for  $\delta^{18}$ O is greater, indicating that opalescent shell has heavier  $\delta^{18}$ O, but not at a level of statistical significance. Indeed, in Figure 8, the opalescent samples, designated by square boxes, tend to cluster towards heavier  $\delta^{18}$ O.

When examining the minor element ratios with respect to shell opalescence, few important results emerged. Using one-tailed t-tests at the 0.05 significance level, lower mean Mg/Ca, Mn/Ca, and Sr/Ca ratios were found for the opalescent shell of the full dataset. Another relatively strong relationship existed for higher Sr/Ca ratios in the opalescent shell. These conclusions were not true for the data subset containing only South Dakota collection sites so likely reflect the contribution of the Kremmling samples to the non-opalescent shell, which dominate the low-Sr/Ca, high-Mg/Ca region of the Sr/Ca-Mg/Ca plot shown as Figure 9. The opalescent shell instead resides below or near the Mg/Ca limit for Recent aragonitic shell, and shows little Sr/Ca depletion.

When the isotopic and minor element data are examined to see if groupings defined by shell color contributed to variation in the data, most null hypotheses cannot be statistically rejected, both in the complete and South Dakota datsets (Table 10). There



are statistically significant differences in mean K/Ca and Mn/Ca for the South Dakota dataset, and a difference in Mg/Ca for both datasets. Statistically insignificant but notable relationships include the differences in  $\delta^{18}$ O (F = 1.94 versus critical F = 2.071), Al/Ca (F = 2.26 versus critical F = 2.477), and Sr/Ca (F = 1.59 versus critical F = 2.044), all for the complete datasets. Among the South Dakota specimens, the highest insignificant F-statistic was Na/Ca (F = 1.6 versus critical F = 2.321).

A graphical analysis of color with respect to genus is presented in Table 11. There is a degree of variability for colors in unaltered shell (with "unaltered" here defined as shell bearing Sr/Ca and Mg/Ca ratios analogous to Recent aragonitic shell). For instance, *Inoceramus* may display one of many colors (10YR8/1, 7.5YR8/2, opalescent N9, and 7.5YR9/2), whereas *Hoploscaphites* has a much narrower range of colors (10YR6/7, and sometimes 10YR7/8). Examining the isotope and minor element cross-plots, darker colors are associated with *Inoceramus* and *Hoploscaphites*, whereas lighter colors are associated with *Baculites* and *Placenticeras*. This observation suggests that the color of less-altered shell is influenced by a genus-level trait.



| Descriptive Color Class Name | <b>Munsell Designation</b> |
|------------------------------|----------------------------|
| Dark Brown                   | 10YR3/6                    |
| Cream                        | 7.5Y9/4                    |
| Grey                         | 10YR8/1                    |
| Light Grey-Tan               | 7.5YR8/2                   |
| Light Brown                  | 10YR7/8                    |
| Orange                       | 10YR7/11                   |
| Light Cream                  | 7.5Y9/2                    |
| DarkTan                      | 10YR6/7                    |
| Light Tan                    | 5Y8/5                      |
| White                        | N9                         |
| Yellow                       | 5Y8/9                      |

**TABLE 8**-Descriptive Names for Munsell Designations of Shell Color Classes

The color descriptive terms used in this paper were selected because they create a more specific mental image of color than the color names associated with the Munsell designations listed above. Approximations of these colors may be seen in the data points in Figures 8 and 9.



| Alternate                  | Type of     | Ν    | Means,                | Calculated | Critical Val. | Result   |
|----------------------------|-------------|------|-----------------------|------------|---------------|----------|
| Hypothesis                 | Test        |      | ± std. dev.s          | Value(s)   | (0.05 sig.)   |          |
| Lower mean $\delta^{13}$ C | One-tailed  | 110, | o: $-2.08 \pm 2.47$   | t = 0.149  | t = 1.674     | Ho       |
| in non-opalescent          | t-test of   | 44n  | n: $-2.82 \pm 4.54$   |            |               | retained |
| shell?                     | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 100, | o: -1.58 ± 1.95       | t = 0.011  | t = 1.688     | Ho       |
| 10                         |             | 28n  | n: $-1.64 \pm 5.71$   |            |               | retained |
| Lower mean $\delta^{18}$ O | One-tailed  | 110, | o: $-3.43 \pm 3.97$   | t = 0.765  | t = 1.674     | Ho       |
| in non-opalescent          | t-test of   | 44n  | n: $-6.98 \pm 5.22$   |            |               | retained |
| shell?                     | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 100, | o: $-2.27 \pm 1.08$   | t = 0.877  | t = 1.688     | Ho       |
|                            |             | 28n  | n: -3.61 ± 1.87       |            |               | retained |
| Lower mean                 | One-tailed  | 50,  | o: 3.47 ± 2.14        | t = -0.73  | t = -1.696    | Ho       |
| Al/Ca in                   | t-test of   | 28n  | n: $5.8 \pm 6.2$      |            |               | retained |
| opalescent shell?          | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 50,  | o: 2.78 ± 2.52        | t = -0.17  | t = -1.734    | Ho       |
|                            |             | 15n  | n: $3.0 \pm 2.6$      |            |               | retained |
| Lower mean                 | One-tailed  | 120, | o: 8.5 ± 11.8         | t = -0.32  | t = -1.672    | Ho       |
| Fe/Ca in                   | t-test of   | 48n  | n: $10.5 \pm 20.1$    |            |               | retained |
| opalescent shell?          | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 110, | o: 9.3 ± 12.3         | t = 0.039  | t = -1.686    | Ho       |
|                            |             | 29n  | $n: 9.0 \pm 24.9$     |            |               | retained |
| Lower mean                 | One-tailed  | 120, | o: 0.07 ± 0.05        | t = -0.5   | t = -1.672    | Ho       |
| K/Ca in                    | t-test of   | 48n  | $n: 0.08 \pm 0.07$    |            |               | retained |
| opalescent shell?          | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 110, | o: 0.07 ± 0.05        | t = 0.6    | t = -1.686    | Ho       |
|                            |             | 29n  | $n: 0.06 \pm 0.03$    |            |               | retained |
| Lower mean                 | One-tailed  | 120, | o: 6.1 ± 8.1          | t = -2.1   | t = -1.672    | Ho       |
| Mg/Ca in                   | t-test of   | 48n  | n: $14.1 \pm 12.3$    |            |               | rejected |
| opalescent shell?          | independent |      | South Dakota only:    |            |               |          |
|                            | samples     | 110, | o: 6.6 ± 8.5          | t = -1.3   | t = -1.686    | Ho       |
|                            |             | 29n  | n: $13.5 \pm 16.4$    |            |               | retained |
| Lower mean                 | One-tailed  | 120, | o: 3.4 ± 3.4          | t = -2.1   | t = -1.673    | Ho       |
| Mn/Ca in                   | t-test of   | 46n  | n: $7.0 \pm 5.5$      |            |               | rejected |
| opalescent shell?          | independent |      | South Dakota only:    |            |               | -        |
| -                          | samples     | 100, | o: $4.087 \pm 10.065$ | t = -0.24  | t = -1.688    | Ho       |
|                            | _           | 28n  | n: $4.483 \pm 4.757$  |            |               | retained |
| Higher mean                | One-tailed  | 120, | o: 18.3 ± 14.0        | t = 0.278  | t = 1.672     | Ho       |
| Na/Ca in                   | t-test of   | 48n  | n: $16.0 \pm 27.0$    |            |               | retained |
| opalescent shell?          | independent |      | South Dakota only:    |            |               |          |
| -                          | samples     | 110, | o: 19.9 ± 11.4        | t = -0.018 | t=1.686       | Ho       |
|                            |             | 29n  | n: $20.1 \pm 31.6$    |            |               | retained |
| Higher mean                | One-tailed  | 120, | o: 3.28 ± 0.75        | t = 1.9    | t = 1.672     | Ho       |
| Sr/Ca in                   | t-test of   | 48n  | n: $2.35 \pm 2.60$    |            |               | rejected |
| opalescent shell?          | independent |      | South Dakota only:    |            |               | J        |
| 1                          | samples     | 110, | o: $3.57 \pm 0.62$    | t = 0.68   | t = 1.686     | Ho       |
|                            | F ···       | 29n  | n: $3.23 \pm 1.62$    |            |               | retained |

**TABLE 9**–Summary Statistics for 'Shell Color' Suite: Shell Opalescence

The null hypothesis, that there is no difference in the means of the opalescent and nonopalescent data sets, holds for most tests in this sampling suite. All isotope ratios reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium.



|                          |                  | 2  | Statistics for Shell               |                   |                  | Doc14          |
|--------------------------|------------------|----|------------------------------------|-------------------|------------------|----------------|
| Alternate                | Type of          | Ν  | Overall means,                     | Calculated        | Critical         | Result         |
| Hypothesis               | Test             |    | ± average standard                 | Value(s)          | Value (0.05      |                |
| D'00 '                   | <b>T</b> ( )' (' | 52 | deviations                         | E 0.405           | significance)    | TT             |
| Difference in            | F-statistic      | 52 | $-3.04 \pm 5.45$                   | F = 0.495         | F=2.071          | Ho             |
| mean $\delta^{13}$ C     |                  | 24 | Cardh Dalacta antar                |                   |                  | retained       |
| among shell hue          |                  | 34 | South Dakota only: $1 (2 + 5)$     | E = 0.442         | E - 2 227        | II.            |
| classes?                 |                  |    | $-1.63 \pm 5.83$                   | F = 0.443         | F = 2.337        | Ho             |
| Difference in            | F-statistic      | 52 | $-6.92 \pm 4.40$                   | F = 1.940         | F= 2.071         | retained<br>Ho |
| mean $\delta^{18}O$      | r-statistic      | 32 | $-0.92 \pm 4.40$                   | г – 1.940         | $\Gamma = 2.071$ | retained       |
| among shell hue          |                  | 34 | South Dakota only:                 |                   |                  | Tetameu        |
| classes?                 |                  | 54 | $-3.65 \pm 1.43$                   | F = 1.345         | F = 2.337        | Но             |
| 01035051                 |                  |    | -5.05 ± 1.45                       | 1 1.545           | 1 2.557          | retained       |
| Difference in            | F-statistic      | 28 | $6.46 \pm 4.25$                    | F = 2.26          | F = 2.477        | Ho             |
| mean Al/Ca               | 1 statistic      | 20 | 0.10 = 1.20                        | 1 2.20            | 1 2.177          | retained       |
| among shell hue          |                  | 15 | South Dakota only:                 |                   | F = 3.478        | 1 o vanno a    |
| classes?                 |                  |    | $4.30 \pm 3.95$                    | F = 1.62          |                  | Но             |
|                          |                  |    |                                    |                   |                  | retained       |
| Difference in            | F-statistic      | 57 | $9.8 \pm 9.9$                      | F = 0.42          | F = 2.044        | Но             |
| mean Fe/Ca               |                  |    |                                    |                   |                  | retained       |
| among shell hue          |                  | 35 | South Dakota only:                 |                   |                  |                |
| classes?                 |                  |    | $15.4 \pm 12.1$                    | F = 0.674         | F = 2.321        | Но             |
|                          |                  |    |                                    |                   |                  | retained       |
| Difference in            | F-statistic      | 57 | $1.89 \pm 1.24$                    | F = 0.977         | F = 2.044        | Но             |
| mean K/Ca                |                  |    |                                    |                   |                  | retained       |
| among shell hue          |                  | 35 | South Dakota only:                 |                   |                  |                |
| classes?                 |                  |    | $3.33 \pm 2.59$                    | F = 8.25          | F = 2.321        | Но             |
| D:00 :                   |                  |    | 145.100                            | E 0.01            | <b>E 2</b> 0.44  | rejected       |
| Difference in            | F-statistic      | 57 | $14.5 \pm 10.3$                    | F = 3.21          | F = 2.044        | Ho             |
| mean Mg/Ca               |                  | 25 | Cauth Dalaata aulau                |                   |                  | rejected       |
| among shell hue classes? |                  | 35 | South Dakota only: $21.9 \pm 10.0$ | F = 7.78          | F = 2.321        | Но             |
| classes?                 |                  |    | $21.9 \pm 10.0$                    | $\Gamma = 7.70$   | $\Gamma = 2.321$ | rejected       |
| Difference in            | F-statistic      | 55 | $6.8 \pm 4.4$                      | F = 1.3           | F = 2.054        | Ho             |
| mean Mn/Ca               | 1-statistic      | 55 | $0.0 \pm 4.4$                      | $1^{\circ} - 1.5$ | 1 - 2.034        | retained       |
| among shell hue          |                  | 34 | South Dakota only:                 |                   |                  | retained       |
| classes?                 |                  | 51 | $10.3 \pm 5.9$                     | F = 6.9           | F = 2.337        | Но             |
| •1000001                 |                  |    | 10.0 0.9                           | 1 015             | 1 2.007          | rejected       |
| Difference in            | F-statistic      | 57 | $15.9 \pm 9.2$                     | F = 1.3           | F = 2.044        | Но             |
| mean Na/Ca               |                  | -  |                                    |                   |                  | retained       |
| among shell hue          |                  | 35 | South Dakota only:                 |                   |                  |                |
| classes?                 |                  |    | $25.2 \pm 8.9$                     | F = 1.6           | F = 2.321        | Но             |
|                          |                  |    |                                    |                   |                  | retained       |
| Difference in            | F-statistic      | 57 | $2.47 \pm 1.26$                    | F = 1.59          | F = 2.044        | Но             |
| mean Sr/Ca               |                  |    |                                    |                   |                  | retained       |
| among shell hue          |                  | 35 | South Dakota only:                 |                   |                  |                |
| classes?                 |                  |    | $4.11 \pm 2.76$                    | F = 1.01          | F = 2.321        | Но             |
|                          |                  |    |                                    |                   |                  | retained       |

TABLE 10- Summary Statistics for 'Shell Color' Suite: Shell Color

Mean Mg/Ca and Mn/Ca statistically differs with respect to shell color. For all other elements, the null hypothesis, that the mean values do not differ by color grouping, holds. All isotope ratios reported in ‰ vs. PDB; all minor element ratios reported in mMol/Mol.



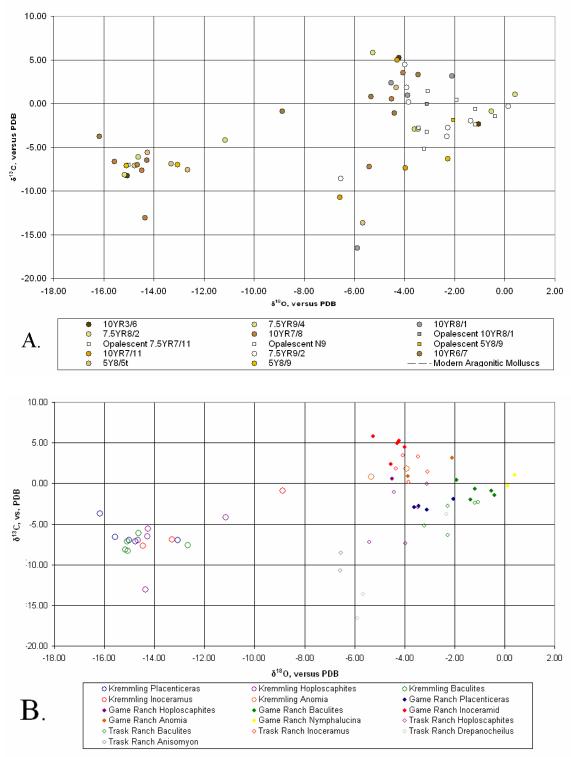
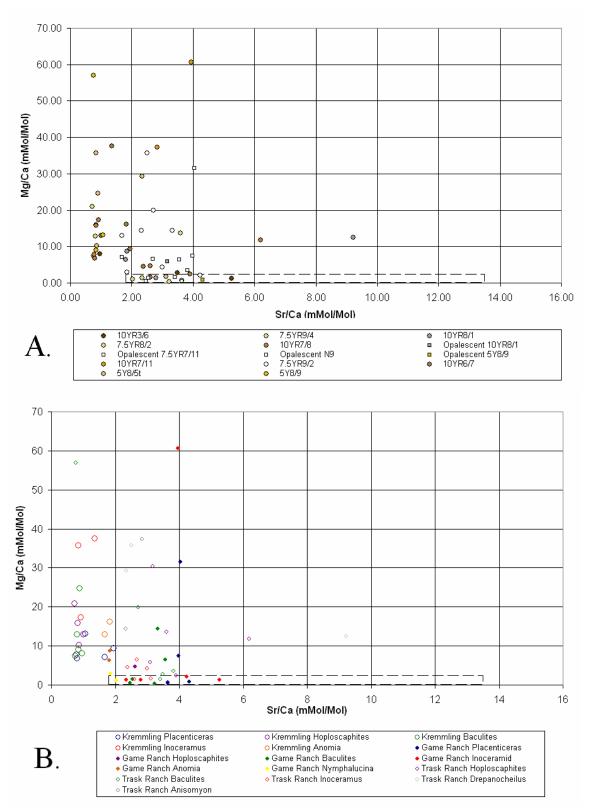




FIGURE 8—Shell Color Stable Isotope Cross-Plot

The opalescent shell clusters at isotopically heavy  $\delta^{18}$ O and intermediate  $\delta^{13}$ C relative to other shell. No clearly-defined pattern exists in relation to shell color and isotopes. FIGURE 9—Shell Color Sr/Ca-Mg/Ca Cross-Plot





Samples from specimens with a light color, without yellow tones, have low Mg/Ca ratios.



|                                                                                                                                                                                                                                    | Placenticeras | Hoploscaphite | Baculites | Inoceramus | Anomia | Nymphalucin | Anisomyon | Drepanocheilus |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------|------------|--------|-------------|-----------|----------------|
| 10YR3/6                                                                                                                                                                                                                            |               | S             | 0         | +          |        | a           |           |                |
| 7.5Y9/4                                                                                                                                                                                                                            | -             | -             | -         |            |        | +           |           |                |
| 10YR8/1                                                                                                                                                                                                                            |               |               |           | +          | -      |             |           | -              |
| 7.5YR8/2                                                                                                                                                                                                                           | +             | -             | +         | +          |        |             |           |                |
| 10YR7/8                                                                                                                                                                                                                            | -             | 0             |           | 0          |        |             |           |                |
| Opalescen<br>t 10YR8/1                                                                                                                                                                                                             |               | -             |           |            |        |             |           |                |
| Opalescen                                                                                                                                                                                                                          |               |               | +         |            |        |             |           |                |
| t<br>7.5Y9/2                                                                                                                                                                                                                       |               |               |           |            |        |             |           |                |
| Opalescen<br>t N9                                                                                                                                                                                                                  | -             |               | +         | +          |        |             |           |                |
| Opalescen<br>t 5Y8/9                                                                                                                                                                                                               | +             |               |           |            |        |             |           |                |
| 10YR7/11                                                                                                                                                                                                                           |               | -             |           | -          |        |             | -         |                |
| 7.5Y9/2                                                                                                                                                                                                                            |               |               | -         | +          | -      | +           | -         | -              |
| 5Y8/5                                                                                                                                                                                                                              | -             | +             |           |            | -      |             |           |                |
| N9                                                                                                                                                                                                                                 |               | -             | -         | 0          |        |             |           | -              |
| 5Y8/9                                                                                                                                                                                                                              | -             |               | -         |            |        |             |           |                |
| Key: + = majority of samples fell within Sr/Ca and Mg/Ca ranges for Recent molluscs<br>- = majority samples fell outside of Sr/Ca and Mg/Ca ranges for Recent molluscs<br>o = equal number of samples within and outside of ranges |               |               |           |            |        |             |           |                |

# TABLE 11—Colors for Unaltered Shell, by Genus

Based on the Mg/Ca and Sr/Ca ranges for Recent aragonitic (and, in the case of *Anomia*, calcitic) shell, unaltered shell may come in several colors. The colors for unaltered shell depend in part on genus, with some genera, such as *Inoceramus*, having many colors for unaltered shell, while others, like *Placenticeras*, having fewer.



2.3.4 Cementation Suite: In the cementation suite, two questions pertaining to shell alteration were addressed. The first of these is whether the presence of cement, crystals precipitated within the phragmacone or growing upon the septa of ammonite shells, mirrors altered minor element concentrations and/or isotopic signatures. The second question is whether, for each sample site investigated, there is a difference between the minor element concentrations and/or isotopic signatures for cements, concretions, and shell. Significant differences in mean isotopic and/or minor element values among the cements, concretions, and shell could serve as indicators for sample contamination. For instance, if samples were taken from a *Hoploscaphites* for sclerochronology, and one showed minor element concentrations intermediate between unaltered shell samples and the concretion, concretion material was likely contaminating the sample and the isotopic data should therefore be disregarded.

A pair of radar charts showing the concentrations of minor elements (Figure 10), in mMol/Mol calcium, shows that shell taken from cemented specimens may have higher concentrations of iron, magnesium, and sodium than shell taken from uncemented samples. The greatest Mg/Ca and Fe/Ca ratios are for the Game Ranch specimens, with Trask Ranch specimens having the greatest Na/Ca ratio and the second-highest Mg/Ca and Fe/Ca ratios. As Figure 11A shows, the average minor element compostion of the cement at the Game Ranch is highly enriched in iron and magnesium relative to the average shell from that location. The cement in the Trask Ranch, however, has a lower concentration of sodium than the average for the shell (Figure 11B). Kremmling cements show a relatively low concentration of all minor elements.

Shell material for samples that were not in the "Cementation Suite" were selected

52

المتسارات

from shells that were not infilled with cement. These shell samples were added to the "Cementation Suite" data to statistically evaluate the differences between cemented and uncemented shell material. The only statistically significant difference with respect to minor element concentrations was the lower mean Mg/Ca concentration in uncemented specimens (Table 12). Other moderately strong relationships, using a one-tailed t test at 0.05 significance, were the lower Al/Ca ratio in uncemented specimens (t = 0.93 versus critical t = 1.663) and lower Na/Ca ratio in uncemented samples (t = 0.96 versus critical t = 1.656). Isotopically, there was a significant difference in the  $\delta^{13}$ C ratio of shell with and without cementation, with lower average  $\delta^{13}$ C values for the cemented shells. At t = 3.80 versus critical t = 1.656, this is the strongest relationship in the examination of cemented and uncemented shell. The oxygen isotope ratio produced the weakest statistical relationship and was, therefore, significantly not affected by cementation.

Figures 12, 13, and 14 display the Sr/Ca-Mg/Ca and  $\delta^{18}$ O -  $\delta^{13}$ C cross-plots for the Kremmling, Game Ranch, and Trask Ranch sites, respectively. In the Kremmling, plot (Figure 12), the samples from cemented specimens seen directly to the right of the cement samples are the shells lowest in Sr/Ca and, thus, furthest from the limit for Recent aragonitic shell. These points have lower  $\delta^{18}$ O and higher  $\delta^{13}$ C than the uncemented samples. Their  $\delta^{13}$ C is comparable with that for cement, whereas their  $\delta^{18}$ O values are intermediate between the cement and samples from uncemented shells. For the Game Ranch site, isotopic data for the cement samples was not available due to low voltage on the mass spectrometer. Therefore, comparisons can only be made with respect to external crystallization. Shells with external recrystallization or cement had lower  $\delta^{13}$ C values than the samples from uncemented shell and  $\delta^{18}$ O values among the lowest for



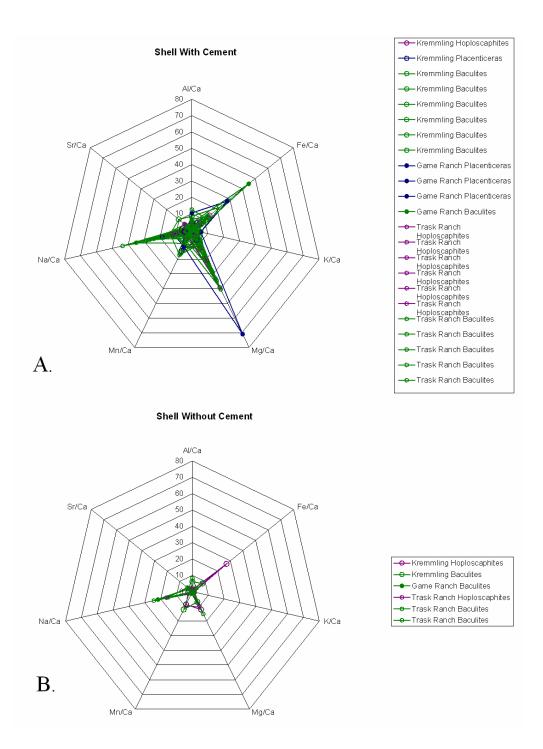
shell (Figure 13). Two of three samples from shells bearing external recrystallization or cement had Sr/Ca-Mg/Ca profiles identical to shell without such precipitation; the third had a Sr/Ca-Mg/Ca profile similar to the concretions. The Trask Ranch data shows the samples from cemented and uncemented shell intermixed on the Sr/Ca-Mg/Ca plot (Figure 14). On the other hand, the isotope cross-plot clearly shows the samples from shell with cement intermediate between samples from uncemented shell and the subset of cement samples that are low in  $\delta^{13}$ C. The samples from cemented shell appear to be dispersed along a line extending from the cluster of uncemented shell to the low  $\delta^{18}$ O and  $\delta^{13}$ C ratios of the cement. A linear fit of y = 0.892x - 4.286 links both cement and cemented shell with an  $r^2 = 0.730$ .

In order to properly compare samples from cemented shell, cement, and concretions, it must be determined if a significant difference exists between for each sampling location. A series of paired t-tests for dependent samples, reported in Tables 13-15, seeks to address this issue. All samples are from specimens that contained shell, concretion, and cement (or, in the case of the Game Ranch, externally precipitated cement or recrystallization). Al/Ca was omitted from the analysis of the Kremmling site because of scarce data.

Partly because the standard deviations are relatively low, within the Kremmling data, the difference in the means of K/Ca and Mn/Ca ratios seen in Figure 11B are statistically significant. The smaller difference in means for Sr/Ca of the shell and cement samples implies that, while positioned completely to the right (higher Sr/Ca) of the cement in Figure 12, the shell samples are not statistically distinct. The  $\delta^{13}$ C values for shell were significantly heavier than those for cement. When comparing shell to

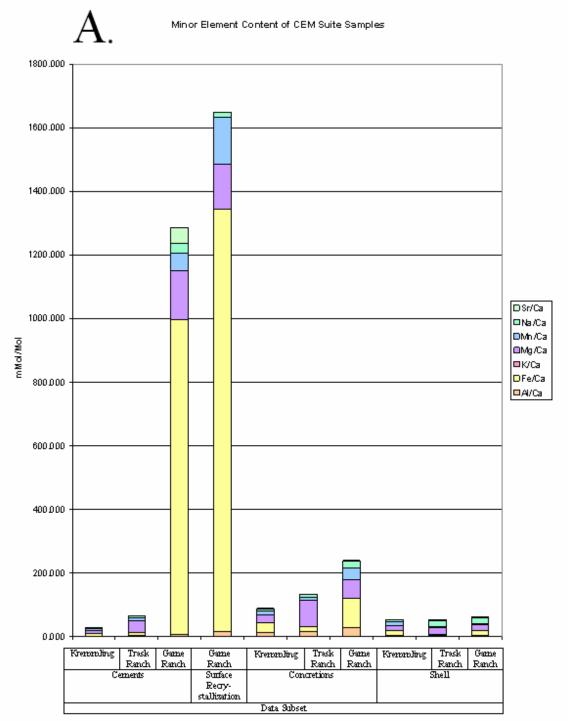


concretion, the shell was significantly lower in Fe/Ca, K/Ca, Mg/Ca, and significantly higher in Na/Ca and Sr/Ca. Thus, on the Figure 12 Sr/Ca-Mg/Ca cross-plot, the concretions appear as a cluster with higher Mg/Ca and lower Sr/Ca than any of the shell samples. The remainder of the elements can be visually compared using Figure 11B; although this graph shows only the mean values, differences can be easily noted for all statistically significant minor element concentrations except the Na/Ca ratio. There was no significant difference between the isotopic signature of shell and concretion for Kremmling, as can be seen by the intermixed data points in Figure 12.


The only statistically significant difference between and shell and concretion for the Game Ranch, South Dakota, data is lower  $\delta^{13}$ C for the concretions. This can be seen in Figure 13 where the data points for the three concretion samples reside clearly below the shell data points. These points are isotopically heavier in  $\delta^{18}$ O than the majority of the shell samples, so a fairly high t-score (t = 1.54 versus critical t = 2.132) results. Other strong relationships include lower Fe/Ca (t = -2.0), K/Ca (t = -1.80), Mg/Ca (t = -2.13), and Mn/Ca (t = -1.5) in shell, all with critical t = -2.13. The samples of external recrystallization or cement and interior cement compare with both concretions and shell by having much higher mean minor element concentrations, especially Fe/Ca, K/Ca, and Mg/Ca (Figure 11A).



Specimens recovered from Trask Ranch show two types of cements. For simplicity, these will be referred to as the Cement-1 and Cement-2 subsets. Cement-2 samples have lower Al/Ca and Mg/Ca, but higher Sr/Ca, than Cement-1 samples, and appear along the regression line with shell in the isotope cross-plot in Figure 14. A shift towards isotopically lighter  $\delta^{13}$ C values is accompanied by a shift towards lighter  $\delta^{18}$ O values. Cement-1 samples appear with concretion samples on the aforementioned graph. For these samples, a shift toward isotopically lighter  $\delta^{13}$ C values is not correlated with any change in  $\delta^{18}$ O. Cement-1 samples cannot be distinguished by appearance in hand sample, and use of thin sections would be advantageous for futher study. Using paired ttests for dependent samples, 0.05 level of significance, cemented shell shows significantly higher Na/Ca and Sr/Ca than Cement-1, as well as lighter  $\delta^{18}$ O. This shell also has significantly lighter  $\delta^{13}$ C. Though not statistically significant, the Mn/Ca values were lower for shell (t = -1.9 versus critical t = 2.132). When compared instead to Cement-2, shell has significantly lower Fe/Ca, Mg/Ca, and Mn/Ca, and higher Na/Ca and Sr/Ca. Other strong relationships include Al/Ca (t = 1.1 versus critical t = 1.860), which is higher in shell, and Mg/Ca (t = -1.72 versus critical t = -1.860), which is lower. Isotopically, as shown in Figure 16, shell is significantly heavier than Cement-2 with respect to carbon but shows no significant difference with respect to oxygen (t = 1.25) versus critical t = 1.895). Lastly, comparing shell from the cemented samples with their concretions, it has lighter  $\delta^{13}$ C and heavier  $\delta^{18}$ O (as visible in Figure 14); lower Al/Ca, Fe/Ca, K/Ca, Mg/Ca, Mn/Ca; and higher Na/Ca and Sr/Ca. The results for all of these comparisons, with the exception of Sr/Ca, are statistically significant.


FIGURE 10— Radar Charts for Minor Elements in Cemented and Uncemented Shell





Cemented shell appears to have higher possible concentrations of Fe, Mg, and Na. However, because n = 7 for the uncemented specimens in the "Cementation" suite, the dataset must be expanded into other suites to make more robust comparisons.





# FIGURE 11—Minor Element Content of "Cementation Suite" Samples

Figure 11A shows a very large enrichment in Fe/Ca, Mg/Ca, and Mn/Ca ratios for cements and external recrystallization or cement from the Game Ranch locality.



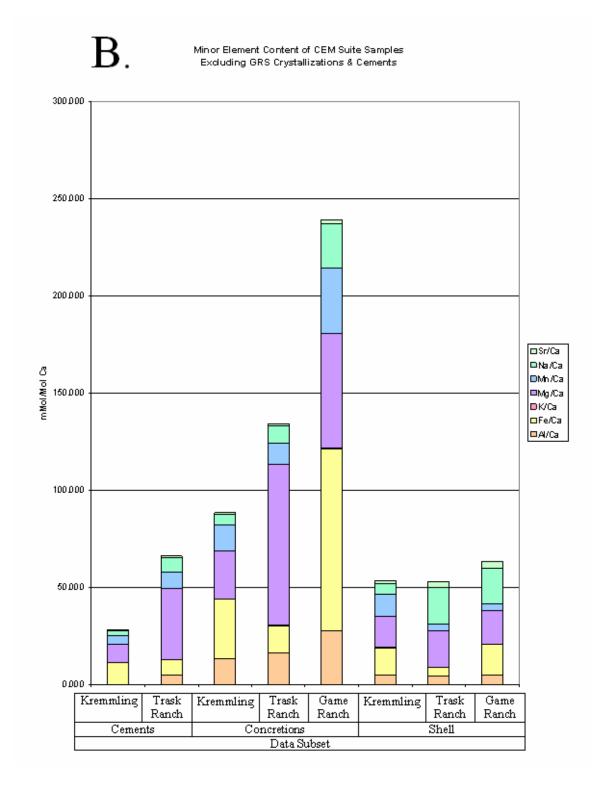
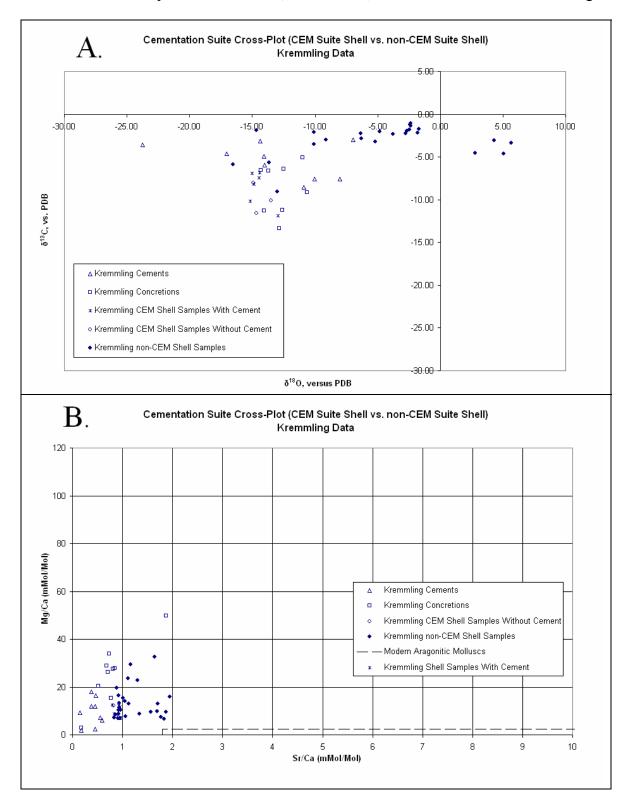



Figure 11B eliminates the Game Ranch interior cement and external recrystallization or cement samples, so the minor element ratios of the other cementation suite materials become apparent. There are higher Mg/Ca ratios, and sometimes Fe/Ca ratios, in concretions than in shell.




| Alternate<br>Hypothesis                             | Type of<br>Test      | N            | Means,<br>± standard<br>deviations   | Calculated<br>Value(s) | Critical<br>Value (0.05<br>significance) | Result                     |
|-----------------------------------------------------|----------------------|--------------|--------------------------------------|------------------------|------------------------------------------|----------------------------|
| Lighter mean $\delta^{13}$ C in cemented shells?    | one-tailed<br>t test | 100u,<br>30c | u: -3.45 ± 4.85<br>c: -7.065 ± 3.410 | t = 3.80               | t = 1.656                                | H <sub>o</sub><br>rejected |
| Lighter mean $\delta^{18}$ O in cemented shells?    | one-tailed<br>t test | 100u,<br>30c | u: -5.80 ± 5.27<br>c: -5.62 ± 5.00   | t = -0.169             | t = 1.656                                | H <sub>o</sub><br>retained |
| Lower mean<br>Al/Ca in<br>uncemented<br>specimens?  | one-tailed<br>t test | 59u,<br>27c  | u: 5.4 ± 5.9<br>c: 4.2 ± 3.1         | t = 0.93               | t = -1.663                               | H <sub>o</sub><br>retained |
| Lower mean<br>Fe/Ca in<br>uncemented<br>specimens?  | one-tailed<br>t test | 101u,<br>36c | u: 8.8 ± 15.5<br>c: 8.1 ± 9.2        | t = 0.2                | t = -1.656                               | H <sub>o</sub><br>retained |
| Lower mean<br>K/Ca in<br>uncemented<br>specimens?   | one-tailed<br>t test | 106u,<br>37c | u: 1.76 ± 1.82<br>c: 1.89 ± 1.34     | t = -0.41              | t = -1.656                               | H <sub>o</sub><br>retained |
| Lower mean<br>Mg/Ca in<br>uncemented<br>specimens?  | one-tailed<br>t test | 106u,<br>37c | u: 11.5 ± 12.4<br>c: 18.1 ± 15.2     | t = -2.63              | t = -1.656                               | H <sub>o</sub><br>rejected |
| Lower mean<br>Mn/Ca in<br>uncemented<br>specimens?  | one-tailed<br>t test | 101u,<br>37c | u: $5.5 \pm 5.2$<br>c: $6.0 \pm 5.2$ | t = -0.48              | t = -1.656                               | H <sub>o</sub><br>retained |
| Higher mean<br>Na/Ca in<br>uncemented<br>specimens? | one-tailed<br>t test | 106u,<br>37c | u: 16.9 ± 9.9<br>c: 15.1 ± 9.5       | t = 0.96               | t = 1.656                                | H <sub>o</sub><br>retained |
| Higher mean<br>Sr/Ca in<br>uncemented<br>specimens? | one-tailed<br>t test | 106u,<br>37c | u: 3.0 ± 2.8<br>c: 2.8 ± 1.9         | t = 0.36               | t = 1.656                                | H <sub>o</sub><br>retained |

**TABLE 12**—Summary of Statistical Tests on Cemented and Uncemented Shell

The cemented shell shows lighter  $\delta^{13}$ C and higher Mg/Ca ratios than uncemented shell. For all other tests, the null hypothesis of no significant difference in mean minor element concentrations or isotopic values between cemented and uncemented shell must be retained. Beyond the level of statistical significance, cemented shell shows lower Na/Ca and higher Al/Ca than uncemented shell. All isotope ratios reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium.





## FIGURE 12-Comparison of Cements, Concretions, and Shell Material for Kremmling



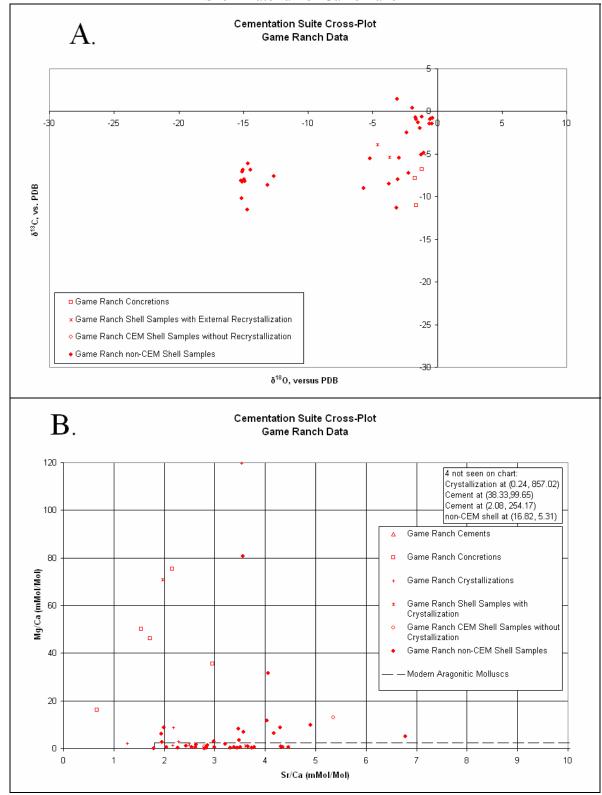
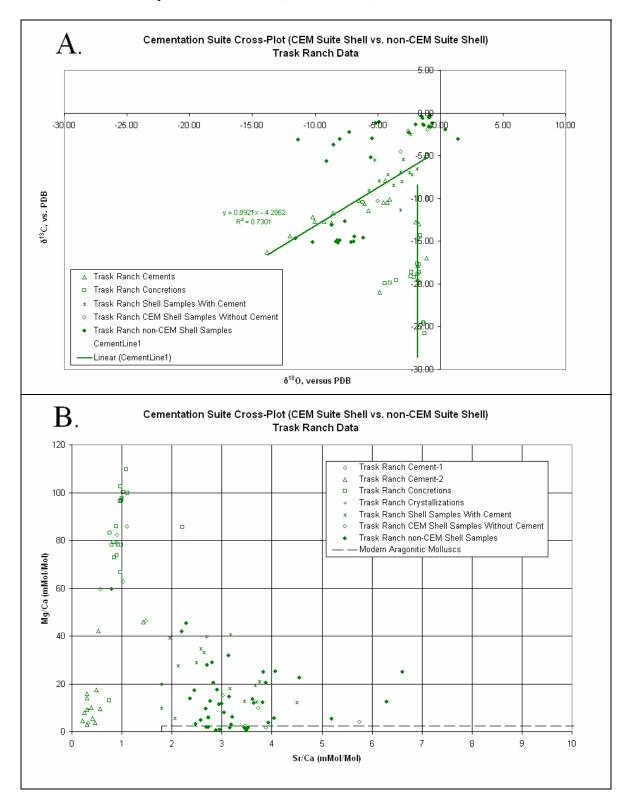




FIGURE 13—Comparison of External Recrystallizations or Cements, Concretions, and Shell Material for Game Ranch



## FIGURE 14-Comparison of Cements, Concretions, and Shell Material for Trask Ranch



| Alternate                 | Type           | N N          | Means,                   | Calcula-  | Critical          | Result                  |
|---------------------------|----------------|--------------|--------------------------|-----------|-------------------|-------------------------|
| Hypothesis                | of Test        | 14           | $\pm$ standard           | ted       | Value             | Kesun                   |
| riypotnesis               | or rest        |              | ± standard<br>deviations |           | (0.05             |                         |
|                           |                |              | deviations               | Value(s)  | (0.05<br>signif.) |                         |
| Heavier mean              | paired t-tests | 8s,          | s: -5.45 ± 2.03          | t(s-co) = | t(s-co) =         | H <sub>o</sub> retained |
| $\delta^{13}$ C in shell? | (dependent     | 8co,         | co: $-9.01 \pm 3.01$     | -0.433    | -1.895            | H <sub>o</sub> rejected |
|                           | samples)       | 8ce          | ce: -8.64 ± 1.99         |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | -3.11     | -1.895            |                         |
| Heavier mean              | paired t-tests | 8s,          | s: -13.52 ± 5.74         | t(s-co) = | t(s-co) =         | H <sub>o</sub> retained |
| $\delta^{18}$ O in shell? | (dependent     | 8co,         | co: $-12.49 \pm 1.28$    | -0.909    | -1.895            | H <sub>o</sub> retained |
|                           | samples)       | 8ce          | ce: $-13.00 \pm 3.83$    |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | -0.476    | -1.895            |                         |
| Lower mean                | paired t-tests | 8s,          | s: 12.9 ± 6.4            | t(s-co) = | t(s-co) =         | H <sub>o</sub> rejected |
| Fe/Ca in shell?           | (dependent     | 8co,         | co: $19.4 \pm 10.6$      | -2.8      | -1.895            | H <sub>o</sub> retained |
|                           | samples)       | 8ce          | ce: $11.5 \pm 5.1$       |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | -0.49     | -1.895            |                         |
| Lower mean                | paired t-tests | 8s,          | s: $0.67 \pm 0.12$       | t(s-co) = | t(s-co) =         | H <sub>o</sub> rejected |
| K/Ca in shell?            | (dependent     | 8co,         | co: $4.58 \pm 2.11$      | -3.6      | -1.895            | H <sub>o</sub> rejected |
|                           | samples)       | 8ce          | ce: $1.78 \pm 1.63$      |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | 2.0       | -1.895            |                         |
| Lower mean                | paired t-tests | 8s,          | s: 10.4 ± 5.3            | t(s-co) = | t(s-co) =         | H <sub>o</sub> rejected |
| Mg/Ca in shell?           | (dependent     | 8co,         | co: $21.3 \pm 9.8$       | -2.8      | -1.895            | H <sub>o</sub> retained |
|                           | samples)       | 8ce          | ce: $11.2 \pm 3.5$       |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | 0.48      | -1.895            |                         |
| Lower mean                | paired t-tests | 8s,          | s: 4.4 ± 1.5             | t(s-co) = | t(s-co) =         | H <sub>o</sub> retained |
| Mn/Ca in shell?           | (dependent     | 8co,         | co: $11.7 \pm 3.2$       | -0.33     | -1.895            | H <sub>o</sub> rejected |
|                           | samples)       | 8ce          | ce: $11.20 \pm 4.57$     |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | 4.8       | -1.895            |                         |
| Higher mean               | paired t-tests | 8s,          | s: 2.4 ± 0.6             | t(s-co) = | t(s-co) =         | H <sub>o</sub> rejected |
| Na/Ca in shell?           | (dependent     | 8co,         | co: $4.24 \pm 1.52$      | 4.4       | 1.895             | H <sub>o</sub> rejected |
|                           | samples)       | 8ce          | ce: $5.47 \pm 4.35$      |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                |              |                          | 2.1       | 1.895             |                         |
| Higher mean               | paired t-tests | 8s,          | s: $0.4 \pm 0.1$         | t(s-co) = | t(s-co) =         | H <sub>o</sub> rejected |
| Sr/Ca in shell?           | (dependent     | 8co,         | co: $0.65 \pm 0.22$      | 3.3       | 1.895             | H <sub>o</sub> retained |
|                           | samples)       | 8ce          | ce: $2.08 \pm 3.32$      |           |                   |                         |
|                           |                |              |                          | t(s-ce) = | t(s-ce) =         |                         |
|                           |                | ۲ <u>۱</u> ۰ |                          | 1.4       | 1.895             | 1 1 11                  |

TABLE 13-Statistical Tests for Kremmling Cements, Concretions, and Shell

At the Kremmling site, significant differences were found between concretions and shell, or cement and shell, for most minor elements. The only statistically significant difference in stable isotopes was heavier δ<sup>13</sup>C in shell versus cement. The null hypothesis, that there is no significant difference between shell and concretion, and between shell and cement, was retained for all other isotopic comparisons and some minor element comparisons. All isotope ratios reported in ‰ vs.PDB; all minor element ratios reported in mMol/Mol.



| Alternate<br>Hypothesis                | Type<br>of Test                          | N          | $\begin{array}{c c} Means, \\ \pm standard \\ deviations \end{array}  \begin{array}{c} Calculate \\ Value(s) \end{array}$ |                    | Critical<br>Value (0.05<br>significance) | Result                     |
|----------------------------------------|------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------|----------------------------|
| Heavier mean $\delta^{13}$ C in shell? | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $-1.91 \pm 1.67$<br>co: $-10.85 \pm 4.93$                                                                              | t(s-co) =<br>-2.51 | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>rejected |
| Heavier mean $\delta^{18}$ O in shell? | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $-2.68 \pm 0.82$<br>co: $-1.56 \pm 0.25$                                                                               | t(s-co) =<br>1.54  | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>retained |
| Lower mean<br>Al/Ca in shell?          | paired t-tests<br>(dependent<br>samples) | 2s,<br>2co | s: $5.4 \pm 7.0$<br>co: $21.9 \pm 21.4$                                                                                   | t(s-co) =<br>-1.8  | t(s-co) =<br>-6.314                      | H <sub>o</sub><br>retained |
| Lower mean<br>Fe/Ca in shell?          | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: 8.1 ± 13.3<br>co: 80. ± 72                                                                                             | t(s-co) =<br>-2.0  | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>retained |
| Lower mean<br>K/Ca in shell?           | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $2.21 \pm 2.31$<br>co: $12.3 \pm 10.5$                                                                                 | t(s-co) =<br>-1.80 | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>retained |
| Lower mean<br>Mg/Ca in shell?          | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $18.6 \pm 34.9$<br>co: $51.9 \pm 16.9$                                                                                 | t(s-co) =<br>-2.13 | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>retained |
| Lower mean<br>Mn/Ca in shell?          | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $3.5 \pm 5.2$<br>co: $22.0 \pm 14.3$                                                                                   | t(s-co) =<br>-1.5  | t(s-co) =<br>-2.132                      | H <sub>o</sub><br>retained |
| Higher<br>mean Na/Ca in<br>shell?      | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $17.4 \pm 4.4$<br>co: $18.7 \pm 12.2$                                                                                  | t(s-co) =<br>-0.39 | t(s-co) =<br>2.132                       | H <sub>o</sub><br>retained |
| Higher mean<br>Sr/Ca in shell?         | paired t-tests<br>(dependent<br>samples) | 5s,<br>5co | s: $2.71 \pm 0.69$<br>co: $2.09 \pm 0.63$                                                                                 | t(s-co) =<br>-0.89 | t(s-co) = 2.132                          | H <sub>o</sub><br>retained |

 TABLE 14—Statistical Tests for Game Ranch Concretions and Shell

Among the Game Ranch samples, no significant differences were found between concretions and shell for minor elements. Several minor elements, however, approached statistical significance: Al/Ca, Fe/Ca, K/Ca, Mg/Ca, and Mn/Ca, all of which were higher in concretions. Heavier  $\delta^{13}$ C occurred in shell versus concretions. The remainder of comparisons did not allow for the statistical rejection of the null hypothesis, no difference between isotopic values and minor element concentrations between shell material and concretions. All isotope ratios reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium.



| Alternate            | Туре        | Ν     | Means,                 | Calculated           | Critical Value      | Result                  |
|----------------------|-------------|-------|------------------------|----------------------|---------------------|-------------------------|
| Hypothesis           | of Test     |       | ± std. deviations      | Value(s)             | (0.05 signif.)      |                         |
| Heavier              | paired t-   | 14s,  | s: -7.96 ± 3.15        | t(s-co) = 2.72       | t(s-co) = 1.771     | H <sub>o</sub> rejected |
| mean $\delta^{13}C$  | tests (dep. | 14co, | co: $-19.85 \pm 4.11$  | t(s-ce1) = 2.18      | t(s-ce1) = 2.132    | H <sub>o</sub> rejected |
| in shell?            | samples)    | 5ce1, | ce1: $-12.12 \pm 3.96$ | t(s-ce2) = 1.25      | t(s-ce2) = 1.895    | H <sub>o</sub> retained |
|                      |             | 8ce2  | ce2: $-13.28 \pm 3.63$ |                      |                     |                         |
| Heavier              | paired t-   | 14s,  | s: -3.21 ± 1.04        | t(s-co) = -1.85      | t(s-co) = 1.771     | H <sub>o</sub> rejected |
| mean $\delta^{18}$ O | tests (dep. | 14co, | co: $-2.59 \pm 1.53$   | t(s-ce1) = 1.41      | t(s-ce1) = 2.132    | H <sub>o</sub> retained |
| in shell?            | samples)    | 5ce1, | ce1: $-5.29 \pm 3.88$  | $t(s-ce^2) = 0.33$   | $t(s-ce^2) = 1.895$ | H <sub>o</sub> retained |
|                      |             | 8ce2  | ce2: $-4.63 \pm 3.48$  |                      |                     |                         |
| Lower                | paired t-   | 14s,  | s: 4.0 ± 3.3           | t(s-co) = -3.7       | t(s-co) = -1.771    | H <sub>o</sub> rejected |
| mean Al/Ca           | tests (dep. | 14co, | co: $15.4 \pm 8.4$     | t(s-ce1) = 0.49      | t(s-ce1) = -2.132   | H <sub>o</sub> retained |
| in shell?            | samples)    | 5ce1, | ce1: $5.6 \pm 8.4$     | $t(s-ce^{2}) = 1.1$  | t(s-ce2) = -1.860   | H <sub>o</sub> retained |
|                      |             | 9ce2  | ce2: $2.2 \pm 2.7$     |                      |                     |                         |
| Lower                | paired t-   | 15s,  | s: 4.4 ± 3.5           | t(s-co) = -4.2       | t(s-co) = -1.761    | H <sub>o</sub> rejected |
| mean Fe/Ca           | tests (dep. | 15co, | co: $13.7 \pm 3.1$     | t(s-ce1) = -0.48     | t(s-ce1) = -2.132   | H <sub>o</sub> retained |
| in shell?            | samples)    | 5ce1, | ce1: $7.3 \pm 4.9$     | t(s-ce2) = -1.9      | t(s-ce2) = -1.860   | H <sub>o</sub> rejected |
|                      | <b>-</b> /  | 9ce2) | ce2: $8.0 \pm 4.1$     |                      |                     |                         |
| Lower                | paired t-   | 15s,  | s: 1.78 ± 1.00         | t(s-co) = -4.0       | t(s-co) = -1.761    | H <sub>o</sub> rejected |
| mean K/Ca            | tests (dep. | 15co, | co: $4.98 \pm 1.58$    | t(s-ce1) = 0.50      | t(s-ce1) = -2.132   | H <sub>o</sub> retained |
| in shell?            | samples)    | 5ce1, | ce1: $1.60 \pm 1.87$   | $t(s-ce^2) = 0.33$   | t(s-ce2) = -1.860   | H <sub>o</sub> retained |
|                      |             | 9ce2  | ce2: $1.55 \pm 0.81$   |                      |                     |                         |
| Lower                | paired t-   | 15s,  | s: 23.0 ± 12.8         | t(s-co) = -4.73      | t(s-co) = -1.761    | H <sub>o</sub> rejected |
| mean                 | tests (dep. | 15co, | co: $79 \pm 24$        | t(s-ce1) = 0.05      | t(s-ce1) = -2.132   | H <sub>o</sub> retained |
| Mg/Ca in             | samples)    | 5ce1, | ce1: $29.6 \pm 35.0$   | t(s-ce2) = -1.72     | t(s-ce2) = -1.860   | H <sub>o</sub> retained |
| shell?               | <b>-</b> /  | 9ce2  | ce2: $32.0 \pm 23.7$   |                      |                     | -                       |
| Lower                | paired t-   | 15s,  | s: 3.53 ± 2.56         | t(s-co) = -3.1       | t(s-co) = -1.761    | H <sub>o</sub> rejected |
| mean                 | tests (dep. | 15co, | co: $11.2 \pm 7.2$     | t(s-ce1) = -1.9      | t(s-ce1) = -2.132   | H <sub>o</sub> retained |
| Mn/Ca in             | samples)    | 5ce1, | ce1: $10.0 \pm 6.7$    | $t(s-ce^{2}) = -4.4$ | t(s-ce2) = -1.860   | H <sub>o</sub> rejected |
| shell?               |             | 9ce2  | ce2: $6.9 \pm 4.1$     |                      |                     | -                       |
| Higher               | paired t-   | 15s,  | s: 18.7 ± 10.0         | t(s-co) = 3.5        | t(s-co) = 1.761     | H <sub>o</sub> rejected |
| mean                 | tests (dep. | 15co, | co: $9.4 \pm 3.9$      | t(s-ce1) = 2.55      | t(s-ce1) = 2.132    | H <sub>o</sub> rejected |
| Na/Ca in             | samples)    | 5ce1, | ce1: $5.99 \pm 3.03$   | $t(s-ce^{2}) = 2.22$ | t(s-ce2) = 1.860    | H <sub>o</sub> rejected |
| shell?               | - /         | 9ce2  | ce2: $11.25 \pm 13.81$ |                      |                     | - <b>-</b>              |
| Higher               | paired t-   | 14s,  | s: 3.27 ± 0.97         | t(s-co) = -0.60      | t(s-co) = 1.771     | H <sub>o</sub> retained |
| mean Sr/Ca           | tests (dep. | 14co, | co: $0.89 \pm 0.09$    | t(s-ce1) = 20.       | t(s-ce1) = 2.132    | H <sub>o</sub> rejected |
| in shell?            | samples)    | 5ce1, | ce1: $0.50 \pm 0.35$   | $t(s-ce^{2}) = 7.5$  | t(s-ce2) = 1.860    | H <sub>o</sub> rejected |
|                      | . ,         | 9ce2  | ce2: $0.59 \pm 0.39$   |                      |                     | ~ ~                     |
|                      |             |       | L                      | l                    | l                   |                         |

Statistically significant differences for the Trask Ranch site include Sr/Ca for the shell versus cements,  $\delta^{13}$ C and  $\delta^{18}$ O for the shell versus concretions, and Na/Ca for both. Most other comparisons resulted in the retention of the null hypothesis, no significant difference in the mean isotopic value or minor element concentration between shell and concretion or shell and cement. All isotope ratios reported in ‰ versus PDB and all minor element ratios reported in mMol/Mol calcium.



## 2.4 Discussion

2.4.1 Review of Sample Suites: In the "Mode of Preservation" suite, enrichment outliers in aluminum, iron, manganese, and strontium were present in the shell material found within the concretions. Furthermore, the concretions had statistically significant higher mean Fe/Ca and Mg/Ca, with a strong (but not statistically significant) relationship between mode of preservation and Mn/Ca ratio. Enrichment in Fe/Ca and Mn/Ca is a diagenetic signature indicative of interaction with meteoric waters (Veizer and Fritz, 1976) or cementation associated with methane seeps (Krause et al., 2003). Therefore, the ammonite specimens preserved in shale are less altered. Buchardt (1977) explains the superior preservation in shale as due to retention of the organic matrix in the low-permeability, chemically reducing environment. Another idea is that the formation of the concretion, itself a chemical phenomenon, sometimes significantly alters the shell that it precipitates around, partially dissolving the shell and reprecipitating the calcium carbonate as calcite within the shell microstructure. The precipitated calcite would have a minor element and isotopic signature between that of pure shell and that of the diagenetic fluid. Thus, taking samples only from the interior of concretions may minimize the effect of chemical weathering when concretions are exposed at the surface, but can do nothing to address early diagenetic alteration. Veizer and Fritz (1976) offer a manganese-based alteration equation to estimate the "degree of alteration" from diagenesis:

Degree of alteration (%) = 
$$\frac{(Mn_{shell} - Mn_{equilibrium}) \times 100}{Mn_{enclosing rock carbonate} - Mn_{equilibrium}}$$
(4)

Using this equation, the average degree of alteration for the samples taken from shell



preserved in concretions was  $33.3\% \pm 37.4\%$ , whereas the average degree of alteration for shell preserved in shale was  $5.6\% \pm 9.1\%$ . These figures should be regarded as general estimates because the "Mode of Preservation" suite did not contain samples of the concretions themselves, so an average Mn/Ca values for each locality, calculated from the "Cementation" suite data, was used. The effect of such alteration on isotopic signals is statistically significant for  $\delta^{18}$ O, and nearly so for  $\delta^{13}$ C. Therefore, shale should be the preferred source for shell material used in  $\delta^{18}$ O paleotemperature and  $\delta^{13}$ C productivity/diet calculations. A third idea, supported by further data in the "Cementation" suite, is that cements found in the concretions are formed by the same diagenetic fluids that cause shell alteration. There was no statistically significant difference in the mean concentrations of Na/Ca (~16 mMol/Mol), K/Ca (~0.8 mMol/Mol) or Sr/Ca (~3mMol/Mol) with respect to mode of preservation. The independence of concentrations of these elements from lithology suggests that shell from both concretions and shale could be used in paleosalinity calculations.

In the "Shell Sampling Location" suite, ammonite septa and adjacent phragmacone were found to commonly display very different isotopic signatures. The  $\delta^{18}$ O values of the septum-phragmacone pairs were significantly different at the 0.05 significance level, whereas the  $\delta^{13}$ C values were not. With a sample size of only ten pairs available, clearly, a larger sample size is needed to resolve this issue. Mann (1992) found greater concentrations of Mg/Ca and Sr/Ca in *Nautilus* septa than in phragmacone. If true for the ammonite samples, this could indicate the influence of mineral-rich extrapallial fluid in shell precipitation. Alternately, higher Mg/Ca but lower Sr/Ca in the septa could indicate diagenetic alteration. The septa of ammonites are frequently



cemented to a greater degree than the phragmacone, and these cements, as Figures 12 and 14 illustrate, are lighter in  $\delta^{18}$ O than the shell they precipitate upon. Differences in the minor element composition of septa versus phragmacone shell, however, are minimal, so neither extrapallial fluid nor cementation is likely the cause of the isotopic disparity in this dataset. Paleosalinity calculations could therefore be performed on septa or phragmacone samples. Nearly all septa – in *Placenticeras, Hoploscaphites*, and *Baculites* – have isotopically lighter  $\delta^{18}$ O than the phragmacone samples. The depression of  $\delta^{18}$ O along the septum is consistent with the highly negative  $\delta^{18}$ O signature of *Nautilus* metabolic CO<sub>2</sub>, which contributes 0-10% of shell carbonate in Recent mollusks (Auclair et al., 2004). However, in a study of aquarium-raised *Nautilus*, Landman et al. (1994) demonstrated that temperatures coincident with the temperature range of the aquarium could be derived from the shell  $\delta^{18}$ O signature. Another suggestion is the time averaging inherent in the formation of a septum. A septum in wild, immature Nautilus may take from 23 to 75 days to precipitate (Cochran et al., 1981), while 0.2 mm of shell takes 17 to 30 days (Saunders, 1983). The onset of septal formation, coincident with the phragmacone samples in this study, could be at times of relatively lower temperature than the average temperature during the spans of time over which the septa were precipitated. Isotopically light  $\delta^{13}$ C could also be a sign of metabolism, as ontogenetically young, small mollusks with a high metabolic rate accumulate more of the lighter isotope derived from food (Mitchell et al., 1994). Because  $\delta^{13}C$  does not vary between septa and phragmcone, however, it may be possible to extract reasonable productivity/food source data from septa.

In the "Shell Color" suite, the assertations of researchers (e.g., Forester et al.,

المنارات المستشارات

1977; Tsujita and Westermann, 1998) who advocate a preference for opalescent shell were supported slightly. Opalescent shell did tend to possess a lower Mg/Ca ratio, with magnesium being an indicator of the presence of secondary calcitic cement, while nonopalescent shell often was depleted in strontium. Strontium depletion will lead to erroneous paleosalinity values, so should be avoided in studies that include paleosalinity using the equation of Brand (1986). Opalescent shell also had isotopically heavier  $\delta^{18}$ O. which might be less altered because both diagenetic cement and meteoric water have lighter  $\delta^{18}$ O than shell material. However, neither of these findings is statistically significant, despite n = 55 (all locations) and n = 38 (South Dakota locations only). Only when Colorado data was removed did the differences in K/Ca and Mn/Ca ratios relate to color class. The only element to vary significantly with color, regardless of collection site, was magnesium (see Figure 9), which tends to be found at higher relative concentrations in yellow, orange, and brown shell material. In particular, the relationship between color class and  $\delta^{13}$ C was weak, suggesting that any color of shell could be used in productivity/food source studies.

In the "Cementation" suite, a comparison of cemented and uncemented shell material revealed a significant difference in only  $\delta^{13}$ C. Cemented shell, therefore, may be used in paleosalinity and paleotemperature reconstructions, but not productivity/food source ones. At the Trask Ranch site, the isotopic signature of the cements which form a linear trend with the altered shell is consistant with second-order cements, having formed by waters of meteroric origin late after deposition (Wright, 1987). These findings conflict directly with the shell alteration model of Veizer and Fritz (1976), which uses the carbonate fraction of the rock (i.e., the concretion) as the composition of the diagenetic



fluid which determined manganese and/or iron enrichment. Therefore, for this locality, the shell alteration equation of Veizer and Fritz (1976) should be modified:

Degree of alteration (%) = 
$$\frac{(Mn_{shell} - Mn_{equilibrium}) \times 100}{Mn_{second order\_cement} - Mn_{equilibrium}}$$
(5)

Application of this modified equation, with  $Mn_{equilibrium} = 15$  ppm for seawater, to Trask Ranch shell data which have associated secondary cement and concretion values, yields a higher average percent altered (57%) for the cement calculation than for the concretion calculation (43%). Because this figure is an estimation of the percent secondary calcite present in a shell sample, it can be correlated with the actual percentage of calcite, as determined by X-ray diffraction, as part of a future study. The isotopic signature of the other cements at the Trask Ranch is consistent with first-order cements, formed by marine waters during early diagenesis (Brand, 1994). The first-order cements, which have the same  $\delta^{18}$ O and  $\delta^{13}$ C signatures as the concretions and a marine isotopic signature, do not appear to have altered shell associated with them. The matrix within the Trask Ranch concretions has slightly negative  $\delta^{18}$ O values and very negative  $\delta^{13}$ C values (-14 to -25‰), similar to those documented for ammonite-bearing concretions from the Late Cretaceous of eastern Siberia (Teys et al., 1978). The values are also similar to those of cements precipitated under conditions of methane oxidation and sulfate reduction for the Gulf of Mexico during the Pleistocene (Howard et al., 2005), and are similarly high in magnesium and iron. The concretions and cements of the Game Ranch locality are even higher in iron and magnesium, enough to classify them as veryhigh-magnesium or iron-calcites (Howard et al., 2005). Again, this is characteristic of depositional environments where methane is being oxidized and sulfate reduced. More



shell material with cementation is also needed, as cementation was an uncommon phenomenon (n = 2 for n = 40 shell samples) in Game Ranch specimens. Exterior crystallization upon the shells had the same minor element and oxygen isotope signature as shell, and thus likely represented recrystallization of the shell rather than a secondary calcite precipitated from a late diagenetic fluid. Concretions had isotopic signatures of -6‰ to -11‰ and -1‰ to -2‰ for  $\delta^{18}$ O and  $\delta^{13}$ C, respectively. The  $\delta^{18}$ O values, heavier than those for Trask Ranch, were equivalent to those reported for a Turonian Western Interior Seaway dataset (Pagani and Arthur, 1998).

Conceivably, the South Dakota concretions were formed from sediment and shell at the bottom of the Western Interior Seaway, perhaps initiated by the interface between an isotopically unusual bottom water and the slightly brackish but isotopically normal seawater above. Because of low oxygen, the presence of methane and sulfur, and rapid sedimentation vertebrate and crustacean predators did not disturb the organisms' remains. Instead, an anaerobic bacterial community, drawn to the organic matter accumulation, thrived. These bacteria produced methane and sulfur compounds. The isotopic signatures of the cements are clearly marine, so the effect from bacterial metabolism on the  $\delta^{18}$ O value of the cement and concretions is likely negligible. The low carbon values of the concretions and infaunal organisms (Drepanocheilus and Anisomyon) are consistent with the accumulation of methane in the sediment pore spaces. A study of the sulfur present in shell, concretion, and cement, which is not possible with the ICP-OES system but could be performed by electron microprobe, could help establish the dynamics of such an ecosystem, as would observation of Recent anaerobic communities. There was, at least occasionaly, a large amount of sulfur in the Western Interior Seaway



because of large pyrite crystals and pyrite-replaced ammonites found in the Pierre Shale in Colorado. Regardless of the proportion of each bacterial type on the seafloor of the Western Interior Seaway, the products from the oxidation of methane and the reduction of sulfate are acidic, and could begin dissolving shell and reprecipitating it as cement to form the start of a concretion. Once the concretion begins growing, it could incorporate calcite from surrounding pore water, producing the characteristic isotopic values. However, this microbially favorable environment came to an end with the Western Interior Seaway, the shale containing concretions was exposed to meteoric water, and diagenetic fluids derived from it penetrated the concretions along planes of weakness, such as dewatering cracks and the fossils themselves. Under this hypothesis, the "septarian" calcites which cross through the concretions should return signatures as Cement-2, influenced by meteoric water.

Lastly, at Kremmling, Colorado, the concretions had a  $\delta^{18}$ O signature similar to the Game Ranch concretion specimens, along with an isotopically light  $\delta^{13}$ C signature (-5‰ to -15‰) on the order of that in meteoric water. Because the isotopic signature of the Kremmling, Colorado, cements is identical to that of the concretions, the cement is likely first-order and thus precipitated from the same fluids that cemented the concretions. Shell material was similar to both concretions and cements in terms of isotopic composition, and appears to follow a J-shaped curve characteristic of alteration by meteoric water. Because Kremmling, Colorado, was a nearshore environment, continued regression during or slightly after the *Baculites compressus/cuneatus* biozones could have exposed the seafloor, even before the concretions fully lithified. This would explain the consistent, thorough alteration of the shell, especially the depletion in Sr/Ca



and Na/Ca, which are present in much smaller concentrations in freshwater than in saltwater. The shell nonetheless differed from concretions and cement in its minor element composition, with significantly lower Fe/Ca, K/Ca, and Mg/Ca ratios than cement, higher Na/Ca and Sr/Ca ratios than cement, and lower K/Ca and Mn/Ca, and higher Na/Ca ratios than concretions. In summary, the variety of isotopic signatures of concretions and cements across the *Baculites compressus/cuneatus* biozones suggest localized diagenetic environments. In terms of minor elements, second-order cementation appears to have the strongest influence on shell light stable isotope chemistry, whereas concretion formation and first-order cements also influence the minor element concentration but appear to have less of an effect on isotopic signature of the shell material.



## 2.4.2 Utility of a Minor Element Alteration Indicator:

With data from all four suites, an evaluation of the utility of a minor-element alteration indicator may be established. Appropriate minor elements to select should be those that, above or below a certain limit, correlate with unusually light isotopic values. The only minor element ratio that does so for both  $\delta^{18}$ O and  $\delta^{13}$ C is Mg/Ca. The Mg/Ca dataset has the added advantage of being more complete than the Fe/Ca and Mn/Ca datasets. For the  $\delta^{18}$ O data, the Sr/Ca ratio also produces a fairly clear fit, among the minor elements that appear be linked to unusually light isotopes (Figure 15). Therefore, a Sr/Ca-Mg/Ca filter is proposed. The use of Sr/Ca was also proposed by Elorza and García-Garmilla (1996) in their study of aragonitic and calcite layers of *Inoceramus* specimens from Spain. For the Western Interior Seaway, the data of Pagani and Arthur (1998) support the use of magnesium as an indicator of alteration. Their figures comparing minor element ratios with visually assessed shell preservation compared to Recent *Nautilus*, show Mg/Ca as the best discriminator between well-preserved and poorly-preserved shell. In contrast, the fields for Fe/Ca and Mn/Ca content show significant proportions of the better-preserved shell outside the limits defined by *Nautilus* (Pagani and Arthur, 1998). Limits for these could be more conservatively based on the full spectrum of Recent aragonitic shell-including habitats worldwide and representatives of Bivalvia, Gastropoda, and Cephalopoda—as given in Buchardt and Weiner (1981), instead of only Nautilus, which lives, at least for part of its life, in a deepwater habitat that was nonexistent in the Western Interior Seaway. It is unlikely that Western Interior Seaway mollusks secreted shell with higher minor element concentrations than mollusks today. In life, mollusks discriminate against both Mg and



Sr in proportion with the concentration of these elements in seawater (Dodd, 1967). The chemistry of first-order marine cements in this study is unusual for the Late Cretaceous, which, based on oolitic limestones and first-order marine cements worldwide, generally had a high overall concentration of Ca in the water and low Mg/Ca ratios (Stanley and Hardie, 1998). Using halites, Trimofeff et al. (2006) demonstate that the Mg/Ca ratios in seawater were low in the Late Cretaceous compared to the present, though the authors calculate that the Early Cretaceous concentrations were even lower. Also, the geochemistry of waters formed under different oxygenation conditions would have influenced shell geochemistry. The Western Interior Seaway, at least in proximity to the sediment-water interface, was often dysoxic, as evidenced by the predominance of black shales. Therefore, the minor element concentrations of the concretions and cements may reflect unique geochemical conditions within the sediments at the bottom of the Western Interior Seaway. Because of this, an empirical filter based on observations of anomalous  $\delta^{18}$ O signatures, derived from Figure 15, is used. These values appear for Mg/Ca > 6.5 mMol/Mol, above the 2.5 mMol/Mol limit for Recent aragonitic molluscan shell material and Sr/Ca < 1.8 mMol/Mol, equivalent to the lower limit for Recent aragonitic molluscan shell (Buchardt and Weiner, 1981). Because higher Mg/Ca ratios than Recent shells are unlikely for the Late Cretaceous, the Mg/Ca acceptability level most likely represents a threshold above which the shell has interacted with mineral-rich diagenetic fluids enough to be isotopically altered and a most-conservative range for the possible minor-element ratios for Cretaceous shell material.



After applying the modified minor element filter described above to all data, when comparing the unfiltered isotopic data (Figure 16) with the filtered isotopic data (Figure 18A), several observations can be made. The first is that the filter eliminates the vast majority of data points, including the entire suite of Kremmling, samples. Data points for both  $\delta^{18}$ O and  $\delta^{13}$ C isotopically lighter than -6‰ are rejected by the filter, although the filter was created looking at values in the -10 to -15‰ range. Fields emerge for Baculites, Inoceramus, and Placenticeras, with a Hoploscaphites point and four Nymphalucina points represented as well (two of these are outliers not included in the graph). All of the gastropods specimens from the genera Anisomvon and Drepanocheilus, as well as the bivalve Anomia, were excluded based on their minorelement ratios. However, further research is needed to determine if this loss is an effect of sample size (i.e., with a larger dataset of these fossils, less-altered specimens would be present) or whether the taxa do tend to contain higher concentrations of Mg/Ca and lower concentrations of Sr/Ca. If the latter is true, the accuracy of isotopic signals from these genera needs to be determined.

Figure 18B replicates the filtered isotopic data, with 90% confidence intervals surrounding the mean ( $\delta^{18}$ O,  $\delta^{13}$ C) data point for each data subset. At the Game Ranch, the overlap of fields for *Placenticeras* and *Baculites* suggests that their habitats in life overlapped. Because of its shell morphology, *Placenticeras* had the most shallow implosion depth of any Western Interior Seaway ammonite, calculated by Tsujita and Westermann (1998) to be ~40 m. However, the total depth of the Western Interior Seaway during the *Baculites compressus/cuneatus* biozones (Harries, pers. comm., 2004), was likely shallower. Based on facies distribution patterns, Batt (1989) proposes



that *Baculites* were planktic but living at a slightly greater average depth than *Placenticeras.* The position of *Jeletskytes* near the *Placenticeras* data points suggests a habitat in the upper water column, consistent the analysis of its mobility by Westerman (1996). The values for *Inoceramus* at the Game Ranch site are distinct, suggesting a different habitat from the ammonites. This benthic habitat must have had a different  $\delta^{18}$ O signature, perhaps influenced by freshwater or by the unique chemical conditions at the bottom of a dysoxic sea. The separation of benthic epifaunal Inoceramus from the nektic ammonites is consistent with all other studies for the Western Interior Seaway reviewed in this paper. The overlap in ranges for the Trask Ranch site could indicate a less stratified water column at the time and location the organisms lived. Neither the relative nor the absolute timing, and neither the relative nor absolute depth, of the Trask Ranch and Game Ranch localities within the *Baculites compressus* biozone is known, and instability (with periodic seafloor dysoxia, which could also explain the abundant black shales) is likely in the Western Interior Seaway. Along with the salinity levels below normal-marine, the dysoxia explains the scarcity of echinoderms, corals, and rudist bivalves in the Western Interior Seaway deposits. Therefore, it is not unreasonable to conclude that the isotopic composition of the water could have varied on a short time scale. On the other hand, the overlap could be due to insufficient data or misapplication of minor-element filters. An important observation that should be made when comparing the  $\delta^{18}$ O and  $\delta^{13}$ C ranges for each genus (Figures 18 and 19, respectively) with statistical data taken for each genus at each location (Tables 16 and 17, respectively), is that the minor element filter is effective at identifying localities that possess shell alteration. In selecting unaltered samples within each locality, the minor element filter discards many



samples that, nevertheless, yield reasonable  $\delta^{18}$ O and  $\delta^{13}$ C values. Of course, a value may be within the range of "reasonable" values yet still not reliably record of the original paleoceanographic signals. The difference in mean isotopic composition between filtered and unfiltered data is not significant for any of the genus-location subsets at the 0.05 significance level, though the increase in  $\delta^{18}$ O ratio of the Trask Ranch baculitids after the application of the filter points to a strong relationship, with t = -1.44 versus critical t = -1.69. The standard deviations for the data subsets do not decrease with the application of the filter. This suggests that despite the possibility of alteration as indicated by minorelement proxies, many specimens with Mg/Ca > 6 mMol/Mol or, to a lesser extent, Sr/Ca < 1.8 mMol/Mol, carry isotopic signatures no different than the "more pristine" shell and that the isotopic signatures contained within shell material may be more robust than generally assumed. Why some fossil shell with increased Mg/Ca ratios and decreased Sr/Ca ratios relative to Recent aragonitic shell is isotopically identical to shell unaltered with respect to these chemicals is a topic that should be explored further. X-ray diffraction could deduce the percentage of calcite in the specimens, and any other minerals contributing to the minor element composition of the shell. Then, scanning electron microscopy of the specimens could reveal if the minerals are replacing aragonite or adhering to it, and if it is the latter, removal of the minerals could restore normal isotopic composition for samples (Cochran et al., 2005).



The values obtained in this study for agree well with prior research in the Western Interior Seaway, though the ranges are greater (Table 19). This study does document a larger  $\delta^{13}$ C range than He et al. (2004) do for *Inoceramus*, extending the bivalve's  $\delta^{13}$ C signature towards heavier values, though the average remains an isotopically heavy 3.06  $\pm$  1.94‰. The *Hoploscaphites* value is heavier in  $\delta^{13}$ C and lighter in  $\delta^{18}$ O than their scaphite, though conclusions should not be overextended from a single data point. Differences may be due to taxonomic effect, as the other studies used other genera of scaphites, or to actual environmental variability. Lastly, the Placenticeras samples in this study, while isotopically light compared to contemporaneous ammonites, did not show the extremely light (-3.4‰ to -7.0‰) values documented by Tsujita and Westermann (1998), because their specimens were likely diagenetically altered.

2.4.3 Salinity and temperature calculations: Several authors (e.g., Rucker and Valentine, 1961; Dodd and Crisp, 1982; Rosenberg and Hughes, 1991) support a positive correlation between salinity and the concentration of sodium within molluscan shell. Brand (1986) found a positive relationship for a large dataset of bivalve and gastropods, both fossil and Recent, the empirically derived equation for which is:

$$S = -5.769 \ln(A) + 28.380$$
(2)

Salinity S is given in parts per thousand  $\pm 0.5$ , and A is the ratio of ppm Sr / ppm Na, or the geometric mean of such ratios. Salinity has little to no correlation with Sr/Ca in molluscan shell (Purton et al., 1999), so Na is the measure of salinity, as advocated by Dodd (1967), and Sr/Ca corrects for taxonomic effects in minor element discrimination. Turekian and Armstrong (1960) show that the concentration of strontium in molluscan shell varies primarily by genus. This is likely because of intergeneric differences in



metabolic rate, which in turn determines the strontium concentrations of molluscs (Rosenberg and Hughes, 1991). Strontium concentrations are significantly higher in Recent cephalopods than in Recent bivalves and gastropods (Dodd, 1967), so the salinity-Sr/Na equation should not be applied directly to cephalopods, as it will overestimate the salinity. Using strontium and salinity data from Brand (1983) and Mann (1992), an adjustment factor of -1.5‰ was derived for the salinity of *Nautilus*. The adjustment is approximate because it was derived from the average Sr/Ca values and environmental salinity for individuals of *Nautilus* found in prior research. This adjustment factor was then applied to the results of the equation on the ammonite specimens in the dataset. The resulting salinities ranged from  $27.7 \pm 9.6\%$  to  $31.6 \pm 0.6\%$  for the filtered dataset (Table 18). The lowest salinities were found in *Placenticeras* and *Hoploscaphites* and the highest were found in *Inoceramus*, consistent with a seaway with denser, more saline water at the bottom.

To calculate the mean  $\delta^{18}$ O of the Western Interior Seaway seawater, the following equation, from Wright (1987), was used:

$$S_{(WIS)} = [1 - (\delta_{w(WIS)} - \delta_{w(ocean)}))/(\delta_{f} - \delta_{w(ocean)})] \times S_{(ocean)}$$
(3)

Constants for  $\delta^{18}$ O of the open ocean were  $\delta_{w(ocean)} = -1.22\%$  PDB and  $S_{(ocean)} = 34.3$ , values calculated from models of Earth without polar ice caps (Schmidt, 1997). The mean  $\delta^{18}$ O (WIS) was calculated at ~-1.27‰, only slightly lighter than the oceanic value and comparable to the data of Schmidt (1997). Slingerland et al. (1996) advocate using freshwater cements as an indicator of freshwater  $\delta^{18}$ O values, noting their general agreement with values from kaolinitic clay from the eastern shore of the Western Interior Seaway. A freshwater value of  $\delta^{18}$ O = -12.72‰, equivalent to the freshwater first-order



cements/concretions at Kremmling, was used in calculations because this meteoric-waterderived freshwater was likely present shortly after the deposition of the fossils. It should be noted, however, that using the value of -20 to -25‰ advocated by Dettman and Lohman, produces  $\delta^{18}$ O (WIS) values that are only 0.02‰ lower.

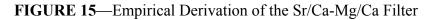
Lastly, paleotemperature was calculated with Grossman and Ku's (1986) equation for aragonitic shell:

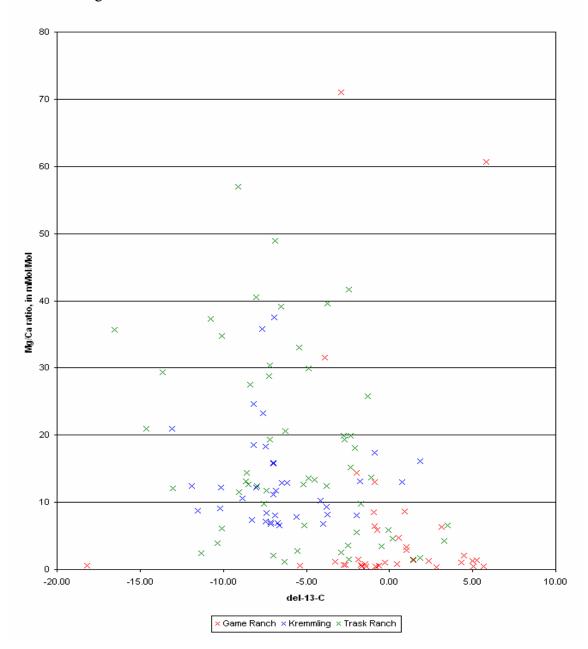
$$T(^{\circ}C) = 21.8 - 4.69(\delta_{c} - \delta_{w}).$$
(5)

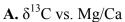
All *Inoceramus* specimens were from the inner nacreous aragonitic layer, rather then the outer prismatic calcitic layer, so the calcite paleotemperature equation of Epstein et al. (1953) was not needed. For this equation,  $\delta_c = \text{the } \delta^{18}\text{O}$  value of the shell and both this value and the  $\delta_w$  value are expressed relative to PDB (1986). Using Bettman and Lohman's freshwater signature, paleotemperatures are higher by 0.1 °C.

The resulting values for *Baculites* agree with values given by He et al. (2005), Tsujita and Westermann (1998), Schmidt (1997), and Fatherree et al. (1998). The Game Ranch values are also equivalent to the *Baculites* values given by Zakharov et al. (2005) for Cretaceous material from the continental shelf of eastern Siberia, though these values are from an earlier time period, the Coniacian. The temperature equivalence implies that the genus *Baculites* lived in habitats of similar temperature across its geographic and stratigraphic range.




For *Placenticeras*, a paleotemperature of  $28.1 \pm 1.1$  °C suggests that these ammonites lived in warm upper waters. This value is at the low end of the range Tsuijita and Westermann calculated, but, as stated previously, their isotopically light  $\delta^{18}$ O values likely come from diagenetically altered material. The high (36 °C) paleotemperature for *Hoploscaphites* is slightly higher than values found for the scaphite *Jeletskytes* by Tsujita and Westermann (1998) and for *Scaphites* by Whittaker, Kyser, and Caldwell (1986). However, the value is at the high end of their range and is approximately at the boundary for cessation of shell precipitation for Recent aragonitic mollusks (Elliot et al., 2003). More unaltered specimens must be examined to determine if the mean shell precipitation is, in fact, closer to the average of 25°C found by Tsujita and Westermann (1998). The  $\delta^{13}$ C value for the *Hoploscaphites* (Figure 20) is within the range of other ammonites, suggesting that the organism lived in a similar habitat.


The *Baculites* specimens examined in this study yielded a paleotemperature of  $20.9 \pm 4.9$  °C for Game Ranch and  $24.7 \pm 4.2$  °C for Trask Ranch. However, as depicted in Figure 20, the isotopic ranges for *Baculites* specimens were quite wide. This could be a reflection of the temperature-induced natural variability in *Baculites*, water-mass migration, short-term climate fluctuations, or an imperfect filter. It is possible that the differences in  $\delta^{18}$ O between Tourtelot and Rye's (1969) *Baculites* data and Forester et al.'s (1977) *Baculites* data do not represent real temperature differences between the two locations, but are instead within the range of variability for *Baculites* from a single location. The  $\delta^{13}$ C range for the *Baculites* specimens is comparable to both prior research and the  $\delta^{13}$ C range for *Placenticeras*.

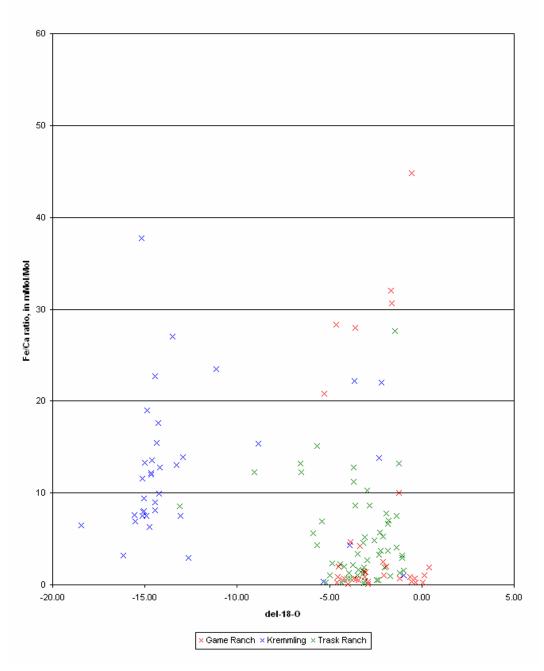



While data for *Placenticeras* and *Hoploscaphites* are sparse, numerous studies provide comparative stable isotope and paleotemperature data for *Inoceramus*. The range of values produced in this investigation, for both  $\delta^{18}$ O and  $\delta^{13}$ C, was comparable to prior research. For each of these isotopes, the range produced by this study is greater than any of the other ranges, but this could be an artifact of the greater amount of data examined. Tsujita and Westermann (1998) and Wright (1987) also obtain anomalously high paleotemperature values for *Inoceramus*. The authors invoke the presence of highly saline bottom water to explain the values. An argument against this explanation, along with further discussion on the paleobiotic implications of these paleotemperatures, is presented in Chapter 3, Section 3.










Above approximately 7 mMol/Mol, a greater number of unrealistic (10-20‰, versus PDB)  $\delta^{13}$ C values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur at the same level.

FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) 85



**B.**  $\delta^{18}$ O vs. Fe/Ca



Above approximately 7 mMol/Mol Fe/Ca, very negative  $\delta^{18}$ O values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur above 9 mMol/Mol.



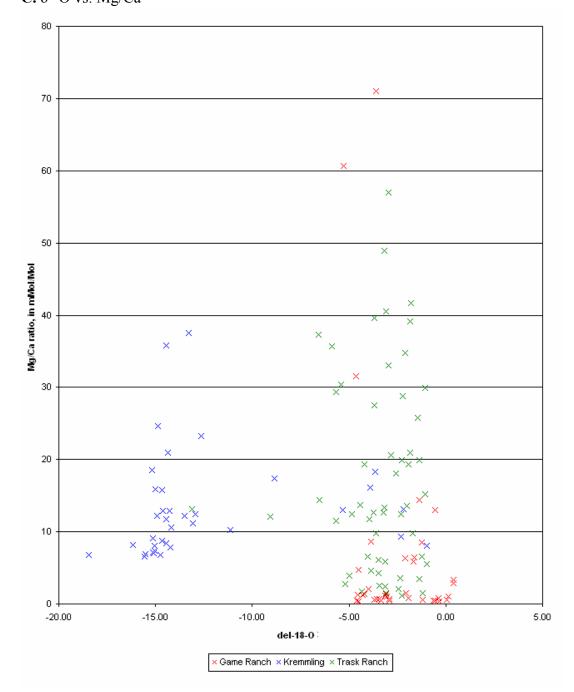



FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) C.  $\delta^{18}$ O vs. Mg/Ca

Above approximately 6.5 mMol/Mol Mg/Ca, a greater number of unrealistic (10-20‰, versus PDB)  $\delta^{18}$ O values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur above 12 mMol/Mol.



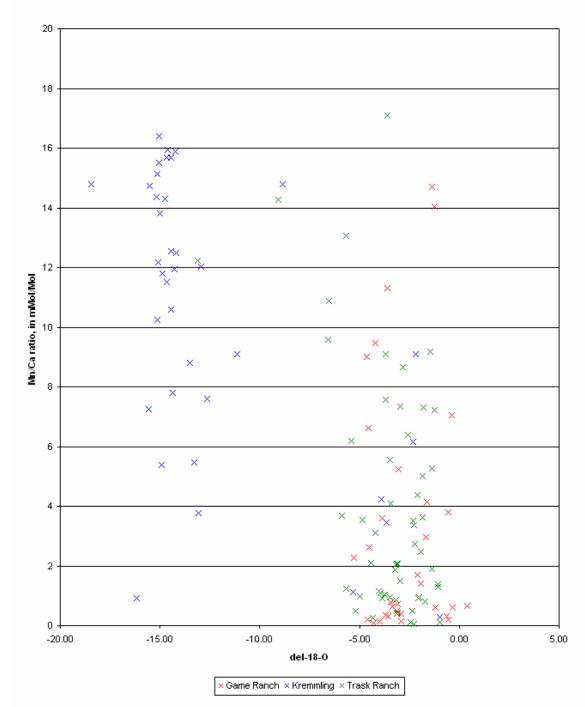



FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) D.  $\delta^{18}$ O vs. Mn/Ca

Above approximately 11 mMol/Mol Mn/Ca, very negative  $\delta^{18}$ O values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur above 12 mMol/Mol.



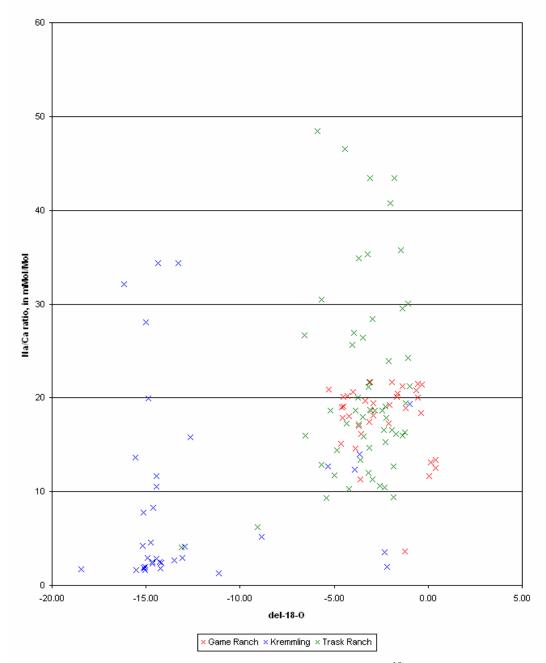



FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) E.  $\delta^{18}O$  vs. Na/Ca

Below approximately 10 mMol/Mol Na/Ca, very negative  $\delta^{18}$ O values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur below 9.5 mMol/Mol.



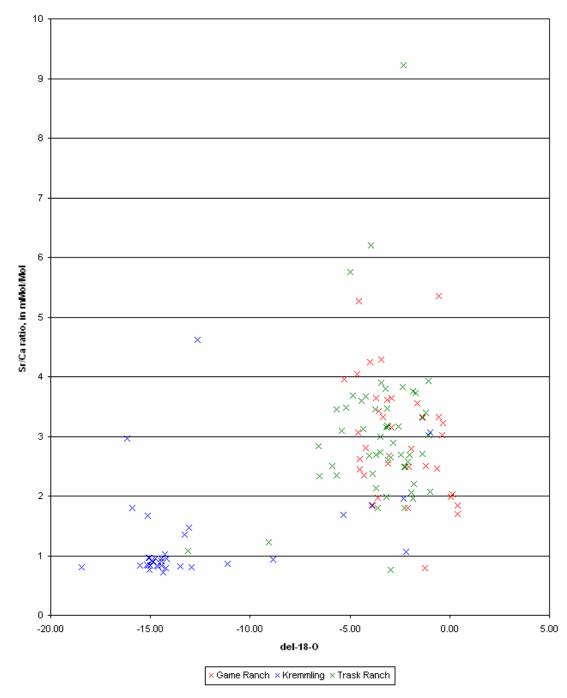



FIGURE 15—Empirical Derivation of the Sr/Ca-Mg/Ca Filter (continued) F.  $\delta^{18}$ O vs. Sr/Ca

Below approximately 1.8 mMol/Mol Fe/Ca, very negative  $\delta^{18}$ O values emerge for the Kremmling dataset. Isotopic outliers for Trask Ranch occur below 1.2 mMol/Mol.



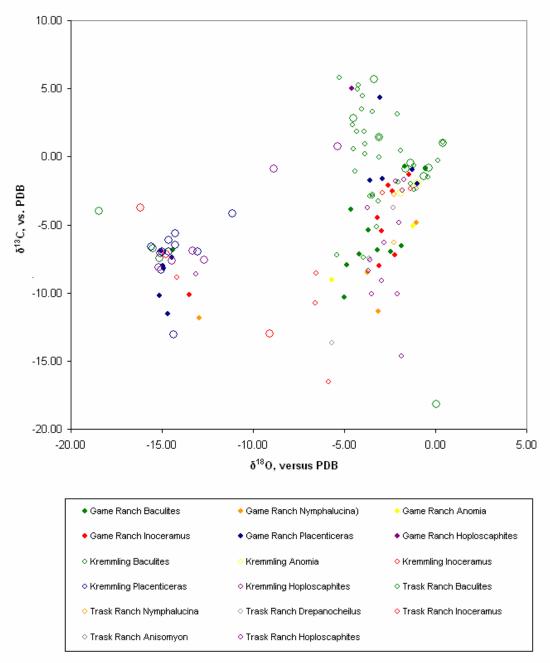



FIGURE 16—Stable Isotope Cross Plot for All Shell Samples

The unfiltered graph for the stable isotope data shows two clear clusters defined by their oxygen isotope ratios. There is also a high degree of variability in samples of the same genus with regards to carbon isotopes.



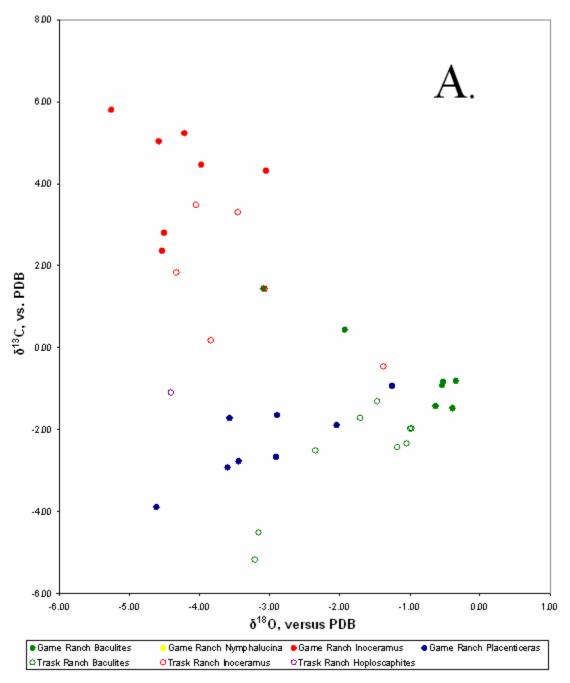



FIGURE 17—Isotope Cross-Plot For All Shell Samples, Filtered by Mg/Ca and Sr/Ca

The stable isotope cross-plot of filtered data shows better-defined fields for each genus. The positioning of the fields relative to each other is consistent with prior research. The ammonites *Baculites* (green) and *Placenticeras* (blue) show a greater variability in oxygen isotopes, whereas the bivalve *Inoceramus* (red) shows more variation in carbon isotopes.



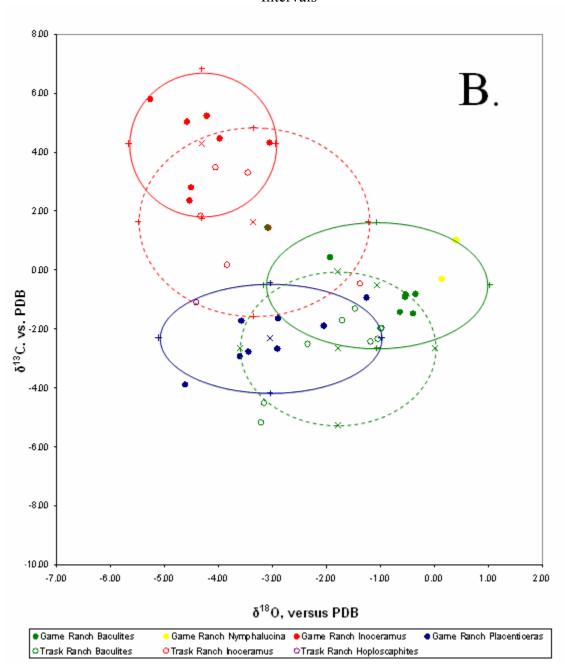



FIGURE 17—Isotope Cross-Plot For All Shell Samples, Filtered by Mg/Ca and Sr/Ca, With 90% Confidence Intervals

In this version of the isotope cross-plot for the filtered data, 90% confidence intervals are drawn from the mean data points. The 90% confidence interval means that if other samples of Western Interior Seaway fossils were taken from the sampling locations, the probability is 90% that they would fall within the confidence interval with the true population mean.



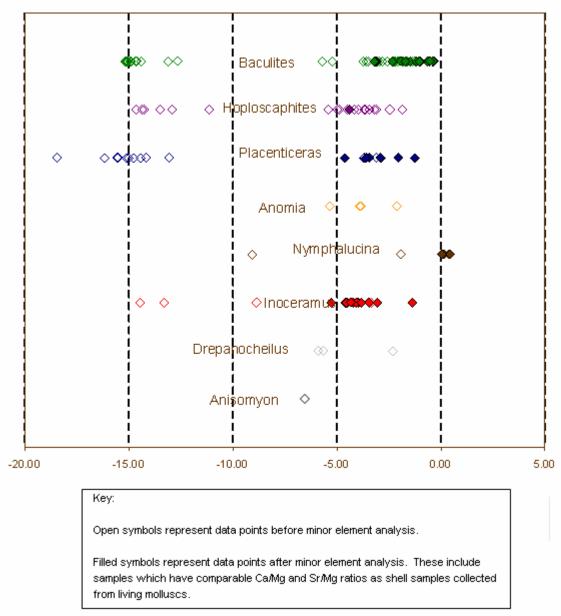
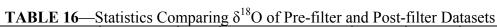




FIGURE 18—Oxygen Isotope Range Chart

Elimination of the data points with Mg/Ca and Sr/Ca outside of the limits of the minor element filter decreases the range of the  $\delta^{18}$ O values for each genus such that all points fall between 1‰ and -6‰. However, it also eliminates less common genera such as *Drepanocheilus* and *Anisomyon* from the dataset.



| Alternate Hypothesis                      | Type<br>of Test | N    | Means,<br>± standard | Calcu-<br>lated | Criti-<br>cal  | Result   |
|-------------------------------------------|-----------------|------|----------------------|-----------------|----------------|----------|
|                                           |                 |      | deviations           | Value           | Value<br>(0.05 |          |
| Lighter $\delta^{18}$ O for Game          |                 | 11   |                      | 4               | signif.)       | II.      |
| Ranch <i>Baculites</i> after filter?      | one-tailed      | 11u, | $u: -1.21 \pm 0.84$  | t =             | t = 1.75       | Ho       |
| Kanch Buculles after fifter?              | t-test (ind.)   | 7f   | f: $-1.07 \pm 1.05$  | -0.34           | -1.75          | retained |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 12u, | u: 11.56 ± 5.75      | N/A             | N/A            | N/A      |
| Baculites after filter?                   | t-test (ind.)   | 0f   | N/A                  |                 |                |          |
| Lighter $\delta^{18}$ O for Trask         | one-tailed      | 32u, | u: $-2.44 \pm 1.14$  | t =             | t =            | Но       |
| Ranch <i>Baculites</i> after filter?      | t-test (ind.)   | 9f   | f: $-1.79 \pm 0.90$  | -1.44           | -1.69          | retained |
| Lighter $\delta^{18}$ O for Game          | one-tailed      | 1u,  | u: -4.51             | N/A             | N/A            | N/A      |
| Ranch <i>Hoploscaphites</i> after filter? | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 7u,  | u: -8.33 ± 3.37      | N/A             | N/A            | N/A      |
| Hoploscaphites after filter?              | t-test (ind.)   | Of   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Trask         | one-tailed      | 13u, | u: $-3.79 \pm 1.01$  | N/A             | N/A            | N/A      |
| Ranch Hoploscaphites after filter?        | t-test (ind.)   | 1f   | f: -4.41             |                 |                |          |
| Lighter $\delta^{18}$ O for Game          | one-tailed      | 11u, | u: $-3.17 \pm 0.90$  | t =             | t =            | Но       |
| Ranch <i>Placenticeras</i> after filter?  | t-test (ind.)   | 8f   | f: $-3.05 \pm 1.03$  | -0.29           | -1.74          | retained |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 10u, | u: $-15.23 \pm 1.42$ | N/A             | N/A            | N/A      |
| Placenticeras after filter?               | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Game          | one-tailed      | 9u,  | u: $-4.20 \pm 0.67$  | t =             | t =            | Но       |
| Ranch Inoceramus after filter?            | t-test (ind.)   | 7f   | f: $-4.27 \pm 0.68$  | 0.48            | -1.76          | retained |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 3u,  | u: $-12.21 \pm 2.96$ | N/A             | N/A            | N/A      |
| Inoceramus after filter?                  | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Trask         | one-tailed      | 6u,  | u: -3.36 ± 1.07      | N/A             | N/A            | N/A      |
| Ranch <i>Inoceramus</i> after filter?     | t-test (ind.)   | 6f   | f: $-3.36 \pm 1.07$  |                 |                |          |
| Lighter $\delta^{18}$ O for Game          | one-tailed      | 2u,  | u: -2.99 ± 1.25      | N/A             | N/A            | N/A      |
| Ranch Anomia after filter?                | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 2u,  | u: $-4.63 \pm 1.01$  | N/A             | N/A            | N/A      |
| Anomia after filter?                      | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Game          | one-tailed      | 4u,  | u: $0.25 \pm 0.19$   | N/A             | N/A            | N/A      |
| Ranch Nymphalucina after filter?          | t-test (ind.)   | 4f   | f: $0.25 \pm 0.19$   |                 |                |          |
| Lighter δ <sup>18</sup> O for Trask       | one-tailed      | 2u,  | u: $-5.50 \pm 5.05$  | N/A             | N/A            | N/A      |
| Ranch Nymphalucina after filter?          | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| Lighter δ <sup>18</sup> O for Trask       | one-tailed      | 3u,  | u: $-4.62 \pm 2.00$  | N/A             | N/A            | N/A      |
| Ranch <i>Drepanocheilus</i> after filter? | t-test (ind.)   | Of   | f: N/A               |                 |                |          |
| Lighter $\delta^{18}$ O for Trask         | one-tailed      | 2u,  | u: $-6.56 \pm 0.03$  | N/A             | N/A            | N/A      |
| Ranch Anisomyon after                     | t-test (ind.)   | 0f   | f: N/A               |                 |                |          |
| filter?                                   |                 |      |                      |                 |                |          |





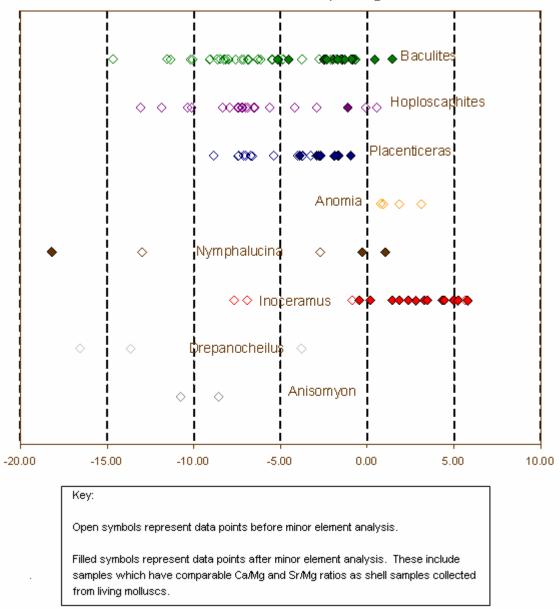



FIGURE 19—Carbon Isotope Range Chart

The minor element filter likewise eliminates light  $\delta^{13}$ C values from the dataset. Ammonites are then distributed between 2‰ and -5‰, and bivalves 6‰ to -1‰, except for an apparent outlier in *Nymphalucina*.



| Alternate Hypothesis                      | Type<br>of Test | Ν    | Means,<br>± standard<br>deviations | Calcu-<br>lated<br>Value | Criti-<br>cal<br>Value<br>(0.05<br>signif.) | Result   |
|-------------------------------------------|-----------------|------|------------------------------------|--------------------------|---------------------------------------------|----------|
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 11u, | u: -0.71 ± 0.94                    | t =                      | t =                                         | Но       |
| Ramch <i>Baculites</i> after filter?      | t-test (ind.)   | 7f   | f: $-0.51 \pm 1.07$                | -0.43                    | -1.75                                       | retained |
|                                           | . ,             |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Kremmling     | one-tailed      | 12u, | u: $-8.13 \pm 1.50$                | N/A                      | N/A                                         | N/A      |
| Baculites after filter?                   | t-test (ind.)   | of   | N/A                                | 4                        | 4                                           | II.      |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 32u, | u: $-5.41 \pm 3.37$                | t =                      | t =                                         | Ho       |
| Ranch <i>Baculites</i> after filter?      | t-test (ind.)   | 9f   | $f: -2.67 \pm 1.30$                | -0.78                    | -1.69                                       | retained |
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 1u,  | u: 0.544                           | N/A                      | N/A                                         | N/A      |
| Ranch <i>Hoploscaphites</i> after filter? | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{18}$ O for Kremmling     | one-tailed      | 7u,  | u: -13.59 ± 1.23                   | N/A                      | N/A                                         | N/A      |
| Hoploscaphites after filter?              | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 13u, | u: $-6.13 \pm 2.97$                | N/A                      | N/A                                         | N/A      |
| Ranch Hoploscaphites after filter?        | t-test (ind.)   | 1f   | f: -1.10                           |                          |                                             |          |
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 11u, | u: $-2.81 \pm 0.93$                | t =                      | t =                                         | Но       |
| Ranch <i>Placenticeras</i> after          | t-test (ind.)   | 8f   | f: $-2.31 \pm 0.93$                | -0.83                    | -1.74                                       | retained |
| filter?                                   | ~ /             |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Kremmling     | one-tailed      | 10u, | u: -6.593 ± 1.564                  | N/A                      | N/A                                         | N/A      |
| Placenticeras after filter?               | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 9u,  | u: $4.52 \pm 1.20$                 | t =                      | t =                                         | Но       |
| Ranch Inoceramus after                    | t-test (ind.)   | 7f   | f: $4.29 \pm 1.27$                 | 0.30                     | -1.76                                       | retained |
| filter?                                   | ~ /             |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Kremmling     | one-tailed      | 3u,  | u: $-5.16 \pm 3.72$                | N/A                      | N/A                                         | N/A      |
| <i>Inoceramus</i> after filter?           | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 6u,  | u: $1.63 \pm 1.60$                 | N/A                      | N/A                                         | N/A      |
| Ranch Inoceramus after                    | t-test (ind.)   | 6f   | f: $1.63 \pm 1.60$                 |                          |                                             |          |
| filter?                                   | × ,             |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 2u,  | u: $-2.02 \pm 1.56$                | N/A                      | N/A                                         | N/A      |
| Ranch Anomia after filter?                | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{13}$ C for Kremmling     | one-tailed      | 2u,  | u: $1.31 \pm 0.76$                 | N/A                      | N/A                                         | N/A      |
| Anomia after filter?                      | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| Lighter $\delta^{13}$ C for Game          | one-tailed      | 4u,  | u: $-4.11 \pm 9.42$                | N/A                      | N/A                                         | N/A      |
| Ranch <i>Nymphalucina</i> after           | t-test (ind.)   | 4f   | f: N/A                             |                          |                                             |          |
| filter?                                   | ()              |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 2u,  | u: $-7.84 \pm 7.30$                | N/A                      | N/A                                         | N/A      |
| Ranch <i>Nymphalucina</i> after           | t-test (ind.)   | 0f   | f: N/A                             |                          |                                             |          |
| filter?                                   | ()              |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 3u,  | u: -11.33 ± 6.69                   | N/A                      | N/A                                         | N/A      |
| Ranch <i>Drepanocheilus</i> after         | t-test (ind.)   | 0f   | f: N/A                             | 1.011                    | 1.711                                       | 1.7.1.1  |
| filter?                                   |                 |      |                                    |                          |                                             |          |
| Lighter $\delta^{13}$ C for Trask         | one-tailed      | 2u,  | u: -9.67 ± 1.54                    | N/A                      | N/A                                         | N/A      |
| Ranch Anisomyon after                     | t-test (ind.)   | 0f   | f: N/A                             | 1 1/ 2 1                 | 11/11                                       | 11/11    |
| filter?                                   |                 | ~1   |                                    |                          |                                             |          |

## **TABLE 17**—Statistics Comparing $\delta^{13}$ C of Pre-filter and Post-filter Datasets



|                                    | Mean δ <sup>18</sup> O <sub>(shell)</sub> ,<br>‰,± Standard<br>Deviation | Mean Salinity, ‰,<br>± Standard<br>Deviation | Mean δ <sup>18</sup> Ο <sub>(WIS)</sub> ,<br>‰, ± Standard<br>Deviation | Mean<br>Paleotemperature,<br>°C,± Standard<br>Deviation |
|------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|
| Game Ranch<br>Baculites            | $-1.07 \pm 1.04$                                                         | $30.6 \pm 0.8$                               | $-1.26 \pm 0.08$                                                        | $20.9 \pm 4.9$                                          |
| Trask Ranch<br>Baculites           | $-1.79 \pm 0.91$                                                         | $29.9\pm2.0$                                 | $-1.26 \pm 0.02$                                                        | $24.8 \pm 4.2$                                          |
| Game Ranch<br>Placenticeras        | $-3.05 \pm 1.03$                                                         | $28.1 \pm 1.1$                               | $-1.28 \pm 0.01$                                                        | $30.1 \pm 4.9$                                          |
| Trask Ranch<br>Hoplo-<br>scaphites | -4.41 (n = 1)                                                            | 27.3 (n = 1)                                 | -1.29 (n = 1)                                                           | 36.5 (n = 1)                                            |
| Game Ranch<br>Inoceramus           | $-4.27 \pm 0.68$                                                         | $31.1 \pm 1.9$                               | $-1.25 \pm 0.02$                                                        | $36.1 \pm 3.2$                                          |
| Trask Ranch<br>Inoceramus          | $-3.36 \pm 1.07$                                                         | $27.7 \pm 9.6$                               | $-1.28 \pm 0.09$                                                        | $31.5 \pm 4.9$                                          |
| Game Ranch<br>Nympha-<br>lucina    | $0.25 \pm 0.19$                                                          | 31.7 ± 0.6                                   | $-1.25 \pm 0.01$                                                        | $14.8 \pm 1.2$                                          |

TABLE 18—Paleoenvironmental Parameters Derived from Filtered Data

The salinity, calculated using the strontium and sodium concentrations in the shell, was used to determine the mean  $\delta^{18}$ O for the Western Interior Seaway. Taking  $\delta^{18}$ O of freshwater to be equal to the mean  $\delta^{18}$ O of Kremmling, Colorado concretions (because the western coastline was the likely source of more freshwater input to the seaway), the mean paleotemperature for each organism at each location was calculated. The data support the notion of lower than normal salinity in the upper-intermediate waters of the seaway and verify the unrealistically high paleotemperatures for benthic epifaunal bivalves.



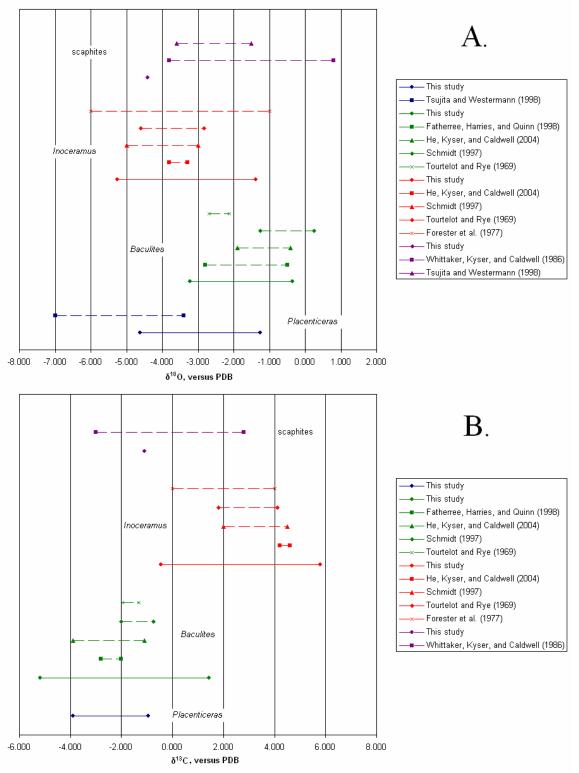



FIGURE 20—Stable Isotope Ranges for Genera in this Study and Prior Research

Results of this study showed comparable light stable isotope signatures with data found by previous studies in the Western Interior Seaway.



### CHAPTER 3. SCLEROCHRONOLOGY

### 3.1 Previous Investigations of Molluscan Sclerochronology

3.1.1 Advantages of Molluscan Sclerochronology: Sclerochronology is the study of changes in the chemical composition of a shell over an organism's lifespan, taken along the growth axis. Chemical composition in this context can be stable isotopic or minor element data. Molluscs are ideal for sclerochronology be cause they grow accretionally, and most have well-defined growth bands that may be used to evaluate the relative age of different parts of the shell and orient the growth axis. For most mollusks, growth is non-destructive; in order to precipitate additional shell, a mollusk does not need to dissolve previously precipitated shell material. Therefore, all shell deposition from embryonic to gerontic stages is generally recorded in a single shell. The record of a single shell contains chemical information with respect to time on the order of months, years, or decades, a resolution generally not available by comparing specimens from different stratigraphic horizons or even within a stratigraphic horizon, which is necessarily time-averaged due to depositional processes. Although mollusks strongly discriminate with respect to elements such as magnesium and strontium found in seawater, they precipitate oxygen and carbon at isotopic ratios close to equilibrium with seawater (e.g., Dodd, 1967; Landman et al., 1994; Elliot et al., 2003).

*3.1.2 Cessation of Growth:* One limitation in evaluating paleotemperature using molluscan shell is that mollusks do not grow throughout the year (Ivany et al., 2003), although this may have been less of a factor during more equable greenhouse conditions.



Bivalves cease deposting shell when the temperature becomes too hot or too cold, or when the mollusk is spawning. These cessations distort the temperature curve derived from  $\delta^{18}$ O. Fatherree (1995) documented this effect for winter cessation of growth for the Western Interior Seaway bivalve *Arctica ovata*, so it is possible even in the more equable climate of the Cretaceous. Whether this cessation is related to temperature or spawning is unknown, as the spawning cycle of the bivalve is unknown. In their study of Recent *Mercenaria mercenaria*, Elliot et al. (2003) note that the bivalve, which spawns in March-June, grew more slowly in summer months than in winter, and grew more slowly overall in inlets with highly variable salinity. *Sepia* showed slowed growth when it was in periods of starvation (Bettencourt and Guerra, 1999).

*3.1.3 Metabolism:* Another challenge of molluscan sclerochronology is the "vital effect," or metabolic signature. All mollusks display a kinetic effect with regards to minor elements, precipitating shell with less strontium and magnesium than seawater (Dodd, 1982). However, the amount of discrimination differs based on shell mineralogy; calcitic bivalves discriminate less against magnesium and more against strontium as compared to aragonitic bivalves (Dodd, 1967). Sodium discrimination also varies, with higher sodium concentrations found in cephalopods than in bivalves or gastropods (Dodd, 1967; Brand, 1983). Mollusks, while not discriminating against heavy isotopes in the manner that plants and bacteria do, display a metabolic effect with regards to oxygen and carbon isotopes. When a correlation between  $\delta^{18}$ O and  $\delta^{13}$ C is positive, it may be due to alteration or to metabolism. At higher metabolic rates, mollusks incorporate more elements contained in their food supply, rather than from seawater, into their shells (e.g., Barrerra et al., 1990; Ivany et al., 2003). Because all molluscan food sources are



isotopically lighter than seawater, the net effect is an isotopically lighter shell. Barrerra et al. (1990) found positive correlations between stable isotopes in the bivalve *Admussium colbecki* along the metabolically active, fastest-growing parts of the shell. The positive correlations for the early ontogeny of *Eutrephoceras* (Landman et al., 1983), *Baculites* (Fatherree et al., 1998), and the bivalve *Cucullaea* (Dutton et al., 2002) may represent a rapid initial growth rate. When studying another Recent bivalve, *Mercenaria mercenaria*, Elliot et al. (2003) found direct relationships between stable isotopes for specimens living in ideal habitats but inverse relationships between the variables where the environment was less conducive to growth and had a shorter summer growth period.

*3.1.4 Analogs for Mollusks of Western Interior Seaway:* Ammonites and inoceramids are extinct organisms with no close relatives, so the interpretation of their sclerochronology must rely on more distantly related analogs. The most common analog used for ammonites is the shelled cephalopod *Nautilus*, of which there are four extant species (Mann, 1992). The cuttlefish *Sepia*, which may be phylogenetically more closely related to ammonites than *Nautilus*, has also been examined. *Sepia*  $\delta^{13}$ C values increase as individuals mature and migrate from inlets with high freshwater input (and highly negative  $\delta^{13}$ C of dissolved inorganic carbon) into the open ocean, though the change in  $\delta^{13}$ C ratio may also reflect changing diet. Temperature values obtained by oxygenisotope paleothermometry fall between 14 °C and 22 °C and slightly overestimate the actual temperature of the inlets in which the *Sepia* lived, as well as the temperature of aquaria where *Sepia* were experimentally raised (Bettencourt and Guerra, 1999). Though the authors explain this mismatch as evidence of a slight vital effect, it could also be the result of the temperature-based shell secretion rates they observed for the organism. As



Ivany et al. (2003) established for the surf clam *Spisula*, if more shell is deposited in warmer temperatures, the oxygen-isotope paleothermometry values will be biased towards the warmer seasons (2003). However, *Nautilus belauensis* individuals raised in an aquarium at 15-24 °C did not show any evidence of temperature-determined growth cessation, or any variation in the oxygen isotopic signature that could not be explained by equilibrium precipitation of aragonite (Landman et al., 1994). This finding suggests that the shift in  $\delta^{18}$ O documented for wild *Nautilus* and potentially other shelled cephalopods after hatching is temperature-dependent rather than physiological.

Certain bivalves, such as *Anomia*, may be compared directly with Recent counterparts, with the caveat that over 73 million years, taxonomic uniformitarianism may not hold for such factors as salinity tolerances and habitat preferences. There are no close relatives to *Inoceramus*, so Wright (1987) applied paleotemperature and paleosalinity equations derived for *Mytilus* on the basis of benthic habitat and similar shell mineralogies. However, with generic-level controls exerting a substantial influence on Mg/Ca and Sr/Ca ratios in Recent bivalves (Turekian and Armstrong, 1960), the comparison could be flawed.

### 3.2 Methods

*3.2.1 Sampling Locations:* Specimens for sclerochronology were selected based on the results of the shell alteration investigation. A suite of specimens that possessed both thick, contiguous shell and Sr/Ca and Mg/Ca ratios similar to Recent aragonitic (or, in the case of *Anomia*, calcitic) mollusks was assembled. The samples included seven *Baculites* of differing diameters, two *Eutrephoceras*, two *Hoploscaphites*, three *Inoceramus*, one *Anomia*, and one *Nymphalucina*.

المنسلة للاستشارات

These shells were sampled using a Dremel<sup>®</sup> variable-speed drill along ontogenetic growth at 2.5 mm intervals starting from the ontogenetically oldest part of shell available. Samples were taken from the part of the shell where growth lines were spaced the furthest apart to maximize the precision. The surface layer of shell was initially excavated into using a flat-bottomed, 3–mm bit to clear away surface contaminants and avoid the light isotopic ratios seen by Mitchell et al. (1994). The internal shell layers were sampled with a 1-mm bit at a consistent depth that, whenever possible, did not penetrate to the inner layer of the shell, where isotopes could be enriched by metabolic CO<sub>2</sub> as noted by Auclair et al. (2004) for *Nautilus*. When shell material was limited, as in the Eutrephoceras, every other sample was taken for ICP-OES analysis and the even increments (0 mm, 5 mm, etc.) reserved for mass spectrometer analysis. In other cases, each odd sample (2.5 mm, 7.5 mm, etc.) was collected such that it could be run for both analyses. For each shell, samples were also taken 2.5 or 5.0 mm apart along specific growth lines, to serve as comparision to the range of values in the ontogenetic sequence.

*3.2.2 Treatment and Analysis of Samples*: Treatment and analysis of samples followed the same ICP-OES and mass spectrometer protocol as discussed in Chapter 2. The ICP-OES samples (see Appendix C) were run first so that their data could be used as a minor-element filter for the mass spectrometer. From these candidates, three specimens (depicted in Figure 20) were selected for isotopic analysis (see Appendix D).

*3.2.3 Data Processing:* Minor element data, reported in ppm, was once again translated into mMol/Mol Ca. These data were then subjected to the Sr/Ca-Mg/Ca minor element filter as discussed in Chapter 2. Sclerochronology candidates which fulfilled the

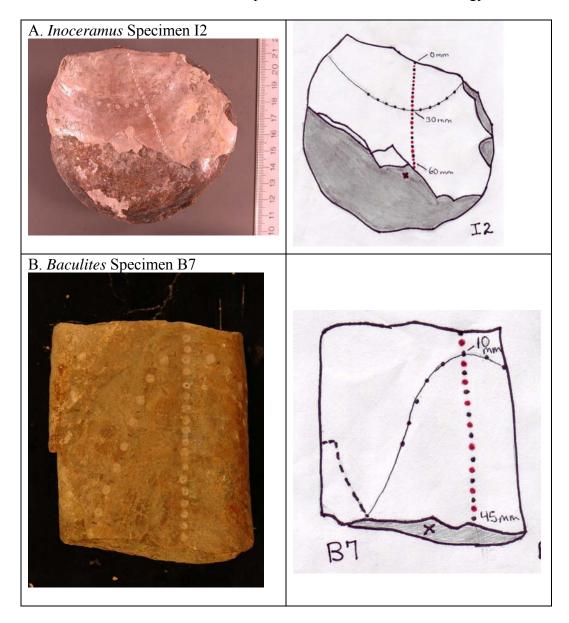


requirements of the minor element filter for at least 80% of their data points were then examined in terms of other minor element ratios that had been linked to altered  $\delta^{18}$ O values, namely Fe/Ca, Mn/Ca, Sr/Ca, and Na/Ca. The three candidates with the minor element ratios least likely to be diagenetically altered were selected for isotopic analysis.

As in the shell alteration investigation, paleoceanographic parameters were calculated from the  $\delta^{18}$ O and  $\delta^{13}$ C ratios, as well as the concentrations of strontium and sodium. Paleosalinity was calculated using the equation of Brand (1986):

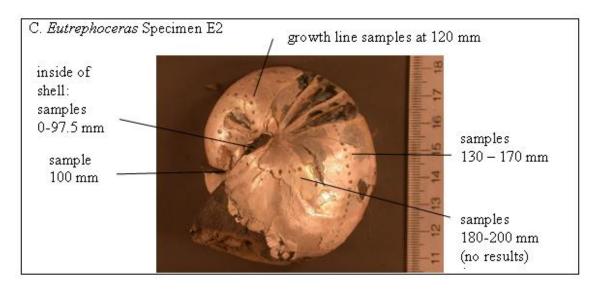
$$S = -5.769 \ln(A) + 28.380$$
(2)

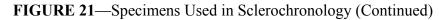
Salinity S is given in parts per thousand  $\pm 0.5$ , and A is the ratio of ppm Sr / ppm Na, or the geometric mean of such ratios. The salinity values for each point were then substituted into an equation (Wright, 1987) for the  $\delta^{18}$ O of the Western Interior Seaway water mass in which the organisms were living:


$$S_{(WIS)} = [1 - (\delta_{w(WIS)} - \delta_{w(ocean)}))/(\delta_{f} - \delta_{w(ocean)})] \times S_{(ocean)}$$
(3)

Models of the Earth without polar ice caps provided the constants for  $\delta^{18}$ O of the open ocean,  $\delta_{w(ocean)} = -1.22\%$  PDB, and salinity of the open ocean,  $S_{(ocean)} = 34.3\%$  (Schmidt, 1997). Lastly, the  $\delta_{w(WIS)}$  value and  $\delta^{18}$ O for each sample of shell material were substituted into Grossman and Ku's molluscan aragonite paleothermometry equation:

$$T = 21.8 - 4.69(\delta^{18}O_{arag} - \delta^{18}O_{w})$$
(1)


where  $\delta^{18}O_{arag}$  is the isotopic signature of the shell material.






# FIGURE 21—Specimens Used in Sclerochronology







Based on minor element concentrations, three specimens were selected to be examined with the mass spectrometer. *Inoceramus* specimen I2 was from the Game Rach locality, and was infilled with, but not enclosed by, concretionary material. Baculites specimen B7 was also from the Game Ranch locality, preserved directly in the shale. *Eutrephoceras* E2 was recovered from a concretion at the Trask Ranch locality.



### 3.3 Results

3.3.1 Inoceramus: Of the bivalve specimens, I2 was selected because of its relatively uniform minor element concentrations (Figure 22). The Nymphalucina specimen N1 was excluded because of peaks in Fe/Ca, the *Inoceranus* specimen I3 was not considered because of peaks in Mg/Ca, Mn/Ca, and Fe/Ca, and the Anomia specimen A1 and *Inoceramus* specimen I1 were dismissed because of numerous peaks in multiple minor elements. The mean minor element ratios in the I2 shell material, in mMol/Mol, were Fe/Ca =  $0.86 \pm 1.49$ , K/Ca =  $0.522 \pm 0.142$ , Mg/Ca =  $1.12 \pm 0.42$ , Mn/Ca =  $0.049 \pm 1.12 \pm 0.42$ , Mn/Ca =  $0.049 \pm 1.12 \pm 0.142$ , Mn/Ca =  $0.049 \pm 0.142$ 0.046, Na/Ca =  $19.8 \pm 0.7$ , and Sr/Ca =  $2.25 \pm 0.93$ . Therefore, the specimen is considered favorable under the Sr/Ca-Mg/Ca minor element filter, and all other possible minor-element filters examined in Chapter 2. The Al/Ca dataset was incomplete so is omitted in this analysis. No general trends in minor element ratios were observed through ontogeny. Noticable deviations in minor element ratios occurred only at the last data point, taken closest to the aperature of the shell. At this point, the Mg/Ca and Fe/Ca ratios increased. The increases, however, do not correspond with changes in isotopic composition (Figure 23).

In general, the  $\delta^{18}$ O and  $\delta^{13}$ C ratios for the *Inoceramus* specimen are inversely related. A plot of these isotopes against each other (Figure 24), however, does not produce a significant correlation. The exception to this pattern occurs in shell samples taken from 0-7.5 mm in distance from the umbo. Ontogenetically, these are the earliest shell samples. In addition, the point at 12.5 mm, displays minima for both isotopic ratios. For the four  $\delta^{18}$ O maxima that occur after 7.5 mm, labeled in Figure n+1, three are coincident with  $\delta^{13}$ C minima, while the other preceded the  $\delta^{13}$ C minima by one sampling



interval. The  $\delta^{18}$ O minima also broadly correlate with salinity minima calculated from Brand's Sr/Na equation (1986). For the *Inoceramus*, the  $\delta^{18}$ O represented in the data ranges from -2.21‰ to -7.02‰, and salinity from 32.2‰ to 33.6‰, corresponding to paleotemperatures of 26.4 °C to a very unlikely paleotemperature of 48.9 °C. The paleosalinity curve approximately parallels the  $\delta^{18}$ O curve, with the exceptions of the ontogenetically earliest sample and the two  $\delta^{18}$ O maxima (temperature minima). These temperature minima are spaced ~40 mm apart and are of approximately the same amplitude. The ontogenetically earlier minimum is ~7 °C warmer than the ontogenetically later minimum, while the ontogenetically earliest data point is  $\sim 8$  °C warmer than the ontogenetically latest data point. However, the ranges in temperature and salinity for the *Inoceramus* do not necessarily represent the total range possible for the organism's lifespan. The accretion of the inner nacreous layer of aragonite is such that a sample taken in a given location will contain not only the paleoceanographic signature of the conditions during formation, but, below that, the signatures of shell formed later. Therefore, the sclerochronologic record of the Inoceramus is greatly timeaveraged. Depending on the relative thickness of the layers secreted along the inside of the shell, the salinity and temperature profiles (Figure 25) that are produced may or may not be proportional to time.

Comparing the ontogenetic variability in  $\delta^{18}$ O and  $\delta^{13}$ C (n = 25) to the variability present in a single growth line at distance = 20 mm (n = 9), a lower standard deviation is present for the growth line than for the ontogenetic sequence. The standard deviation of the ontogenetic sequence is 0.97‰ for  $\delta^{18}$ O and 0.67‰ for  $\delta^{13}$ C, whereas these values are 0.68‰ for  $\delta^{18}$ O and 0.49‰ for  $\delta^{13}$ C for the growth line. Based on one-tailed t-tests



with a 0.05 level of significance, there is no statistically significant difference between the mean  $\delta^{18}$ O value of -5.46 ± 0.97‰ for the ontogenetic sequence and -5.39 ± 0.68‰ for the growth line, or between the mean  $\delta^{13}$ C value of 5.48 ± 0.67‰ for the ontogenetic sequence and 5.62 ± 0.49‰ for the growth line. The sample taken from the I2 concretion produced no data due to mass spectrometer error.



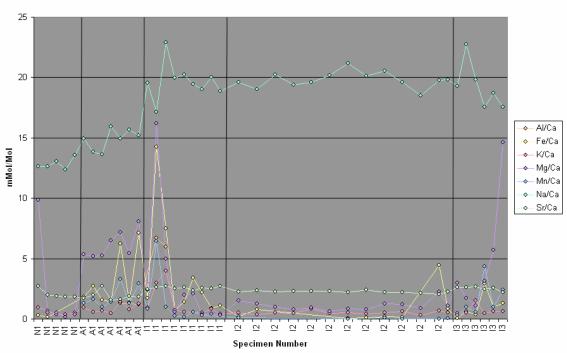



FIGURE 22—Minor Element Ratios for Sclerochronology: Bivalves

The inoceramid bivalve I2 shows the most consistent, low Fe/Ca, Mg/Ca, and Mn/Ca values. With twelve values for the minor element analysis, representing six centimeters, it is also the longest record for the sclerochronology candidate bivalves. Therefore, this specimen was selected for isotopic analysis. N1 = *Nymphalucina*, A1 = *Anomia*, I1-I3 = *Inoceramus*.



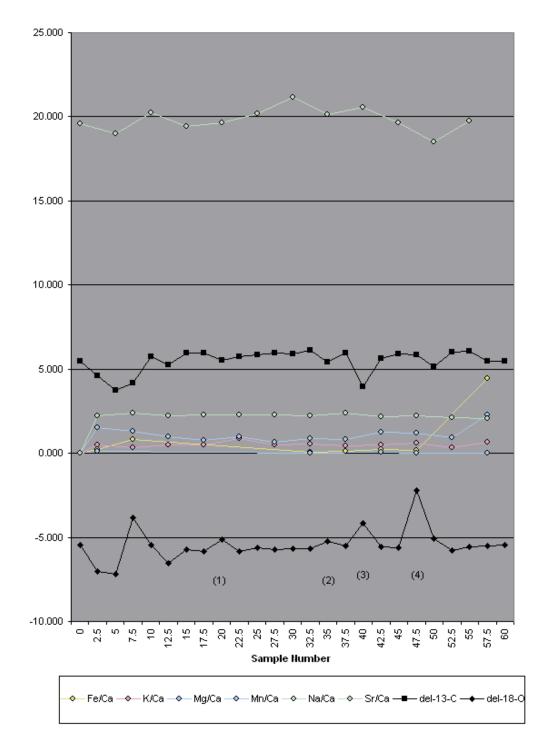



FIGURE 23—Sclerochronology of Inoceramus Specimen I2



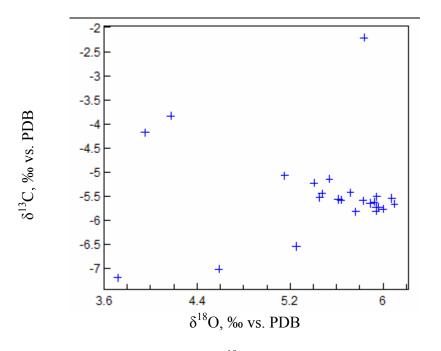
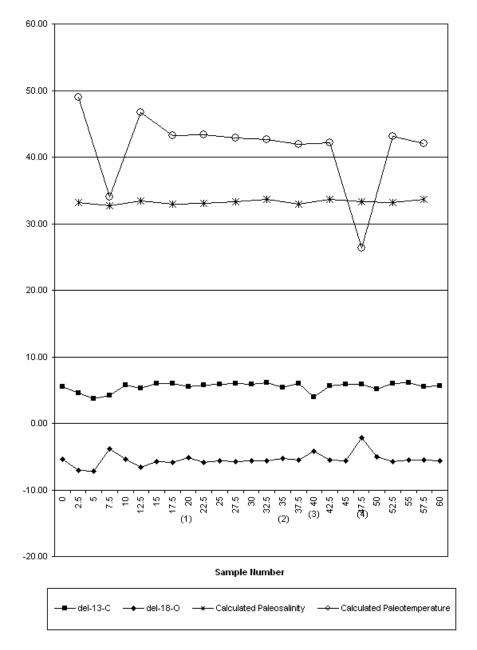




FIGURE 24— $\delta^{18}$ O Versus  $\delta^{13}$ C for *Inoceramus* Specimen I2

Although most relative maxima in the  $\delta^{18}$ O curve correspond to relative minima in the  $\delta^{13}$ C curve, a statistically significant linear correlation cannot be fit to the data. The data points below  $\delta^{18}$ O = 5.2‰ do not appear to fit any pattern; it is possible to see a slight negative trend to the clustered data of  $\delta^{18}$ O values heavier than 5.2‰.



## FIGURE 25—Calculated Paleotemperature through "Ontogeny" for *Inoceramus* Specimen I2



Scierochronology: Inoceramus

Although the "ontogenetic" sequence for the *Inoceramus* is time-averaged, a sine curve fits the temperature data reasonably well.



*3.3.2. Baculites:* Of the six *Baculites* specimens, B7 was selected because of its relatively uniform minor element concentrations (Figure 26), which satisfied all possible minor element filters. The mean minor element ratios in the shell, in mMol/Mol, were  $Fe/Ca = 0.389 \pm 0.218$ ,  $K/Ca = 0.86 \pm 0.26$ ,  $Mg/Ca = 1.31 \pm 0.91$ ,  $Na/Ca = 21.4 \pm 3.4$  (19.8  $\pm$  0.9 without outlier), and  $Sr/Ca = 2.72 \pm 0.29$ . The Al/Ca and Mn/Ca datasets were incomplete so are omitted in this analysis. No general trends in minor element ratios occurred at 12.5 mm from the ontogenetically youngest point on the specimen, where Mg/Ca increased from 1.14 to 3.04 mMol/Mol, and 17.5 mm, where the Na/Ca ratio changed from 19.9 to 28.2 mMol/Mol. In both cases, the sampling location directly following the deviation showed minor element ratios returning approximately to the predeviation value. As in the *Inoceramus* specimen, the increases in Na/Ca and Mg/Ca do not correspond with changes in isotopic composition (Figure 27).

In general, the  $\delta^{18}$ O and  $\delta^{13}$ C ratios for the *Baculites* specimen are directly related (Figure 28). A plot of these isotopes against each other (Figure 29) does not produce a statistically significant trendline. The sclerochronologic variations for the *Baculites* likewise show similar trends, albeit with vastly different magnitude fluctuations, between  $\delta^{18}$ O and  $\delta^{13}$ C data curves. For every  $\delta^{18}$ O maximum, there is an equivalent  $\delta^{13}$ C maximum at the same location, or one sampling location later in time/distance. Relative maxima occur at 5.0, 12.5, and 17.5 mm from the ontogenetically earliest sample. Relative minima occur at 0.0, 10.0, 15.0, and 25.0 mm. Through ontogeny, the amplitude of the  $\delta^{18}$ O and  $\delta^{13}$ C excursions decreases. There does not appear to be any relationship between the  $\delta^{18}$ O and  $\delta^{13}$ C maxima and the salinity data curve (Figure 30) derived from



Brand's Sr/Na equation (1986). For the *Baculites*,  $\delta^{18}$ O ranged from -0.97‰ to -1.84‰, and salinity from 31.7‰ to 35.5‰, corresponding to paleotemperatures of 20.9 °C to 22.6 °C. The highest salinity value corresponds to the Na/Ca peak, and if this point is disregarded as a statistical outlier, the maximum salinity is 32.4‰ and the minimum paleotemperature is unaffected. There is a possible general decrease in  $\delta^{18}$ O over ontogeny as well as the aforementioned trend in the amplitude of minima and maxima.

Comparing the ontogenetic variability in  $\delta^{18}$ O and  $\delta^{13}$ C (n = 11) to the variability present in a single growth line at distance = 15 mm (n = 8), a lower standard deviation is present for the ontogenetic sequence than for the growth line. The standard deviation of the ontogenetic sequence is 0.24‰ for  $\delta^{18}$ O and 0.81‰ for  $\delta^{13}$ C, whereas these values are 1.23‰ for  $\delta^{18}$ O and 0.72‰ for  $\delta^{13}$ C for the growth line. Based on one-tailed t-tests with a 0.05 level of significance, there is no statistically significant difference between the mean  $\delta^{18}$ O value of -1.28 ± 0.24‰ for the ontogenetic sequence and -1.65 ± 0.72‰ for the growth line, or between the mean  $\delta^{13}$ C value of -3.25 ± 0.81‰ for the ontogenetic sequence and -3.62 ± 0.42‰ for the growth line. The sample taken from the B7 concretion returned a  $\delta^{18}$ O value of -2.10‰ and a  $\delta^{13}$ C value of -23.65‰.



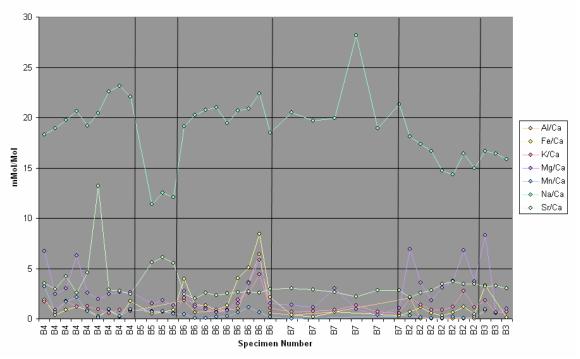
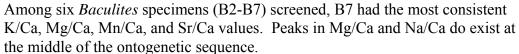




FIGURE 26—Minor Elements Used for Sclerochronology: Baculites





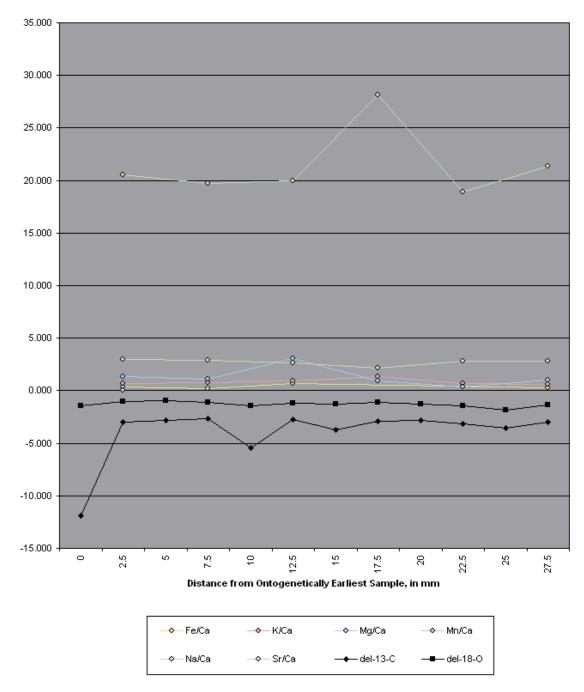



FIGURE 27-Sclerochronology of Baculites Specimen B7

While the deviation in Na/Ca ratio seen at 17.5 mm from the ontogenetically earliest sample influenced the calculated salinity of *Baculites* specimen B7, it did not coincide with a change in  $\delta^{18}$ O or  $\delta^{13}$ C. There was also no associated change in  $\delta^{18}$ O or  $\delta^{13}$ C associated with the Mg/Ca peak at distance = 12.5 mm.



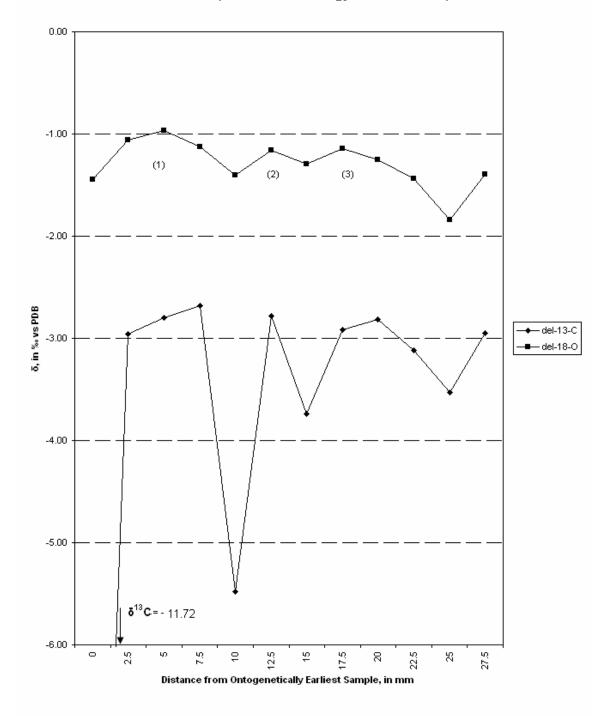
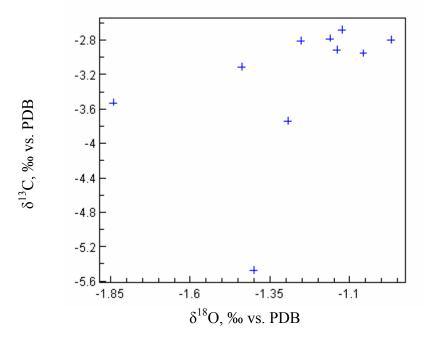
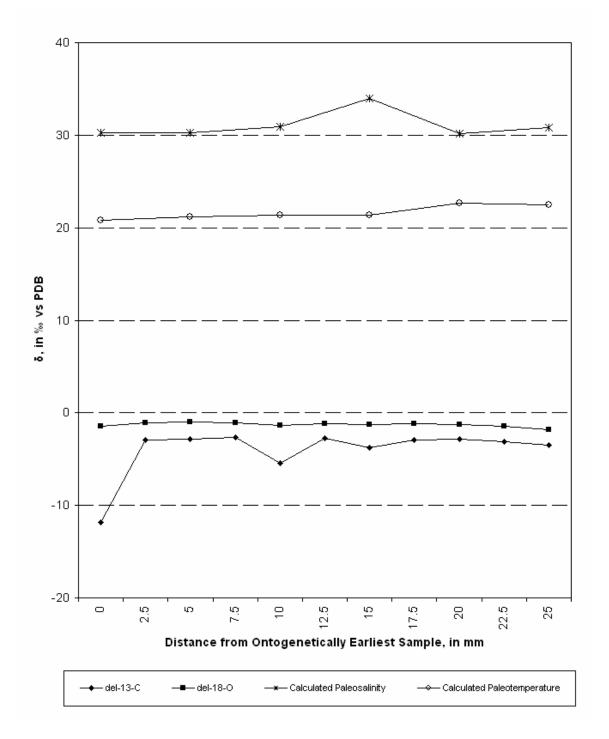
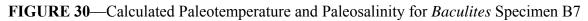




FIGURE 28—Stable Isotope Sclerochronology of Baculites Specimen B7

In general, the  $\delta^{18}$ O or  $\delta^{13}$ C curves for *Baculites* specimen B7 parallel each other. The three labeled maxima in the  $\delta^{18}$ O curve match with three maxima in the  $\delta^{13}$ C curve, though the amplitude of the variations in the  $\delta^{13}$ C curve is much greater.





**FIGURE 29**— $\delta^{18}$ O Versus  $\delta^{13}$ C for *Baculites* Specimen B7



The  $\delta^{18}$ O and  $\delta^{13}$ C of *Baculites* specimen B7 do not produce a statistically significant linear fit. There does, however, appear to be a general trend of increasing  $\delta^{18}$ O with increasing  $\delta^{13}$ C.









3.3.3 Eutrephoceras: Of the Eutrephoceras specimens, E2 was selected because it offered the most expansive dataset. Minor element ratios for the two specimens were comparable. The E2 dataset included more samples taken from the inner whorls of the shell, including two samples from the neanoconch, the early developmental stage characterized in *Eutrephoceras* by cancellate ornamentation (Landman et al, 1983). E2 also had fewer mass spectrometer errors or underweight samples. While the minor element ratios vary more than in the Inoceramus or Baculites specimens, the Sr/Ca ratio is reasonable with respect to the filter limits. The Mg/Ca ratio peaks above 6.5 mMol/Mol at 12.5, 32.5, and 62.5 mm from the ontogenetically earliest point (Figure 31). All of these points are coincident with the appearance of cement upon the septa. The cement is highly enriched in Mg, with Mg/Ca values of 71.9 mMol/Mol and 32.7 mMol/Mol. Fe/Ca and Mn/Ca ratios, also higher in the cement than in the shell, peak at these locations as well. Na/Ca minima coincide with these maxima. The cement nearest to the protoconch coincides with a slight increase in both  $\delta^{18}$ O and  $\delta^{13}$ C, although this could be circumstantial.

The  $\delta^{18}$ O and  $\delta^{13}$ C curves in *Eutrephoceras* specimen E2 appear to parallel each other (Figure 32), and when the stable isotopes are plotted against each other as in Figure 33, a positive, statistically significant linear fit emerges. This trendline has a strong r<sup>2</sup> value of 0.673 and a p-value of 4.52 x 10<sup>-4</sup>. The isotopes share relative minima at 40, 55, 75, 85, 105, and 170 mm from the protoconch. The largest deviations are those at 55, 105, and 175, and may represent a periodic trend. There does not appear to be any trend in the amplitude of these minima, nor any overall trend in  $\delta^{18}$ O and  $\delta^{13}$ C. Another relationship which emerges from the sclerochronologic investigation of *Eutrephoceras* 



specimen E2 is, as in *Baculites* specimen B7, a general positive correlation between  $\delta^{18}$ O and salinity (Figure 34). This relationship is stronger for the interior portion of the shell. Clearly, the datapoints latest in ontogeny show anomalous  $\delta^{13}$ C and Na/Ca.

Comparing the ontogenetic variability in  $\delta^{18}$ O and  $\delta^{13}$ C (n = 28) to the variability present in a single growth line at distance = 125 mm (n = 8), a higher standard deviation is present for the ontogenetic sequence than for the growth line. The standard deviation of the ontogenetic sequence is 0.80 ‰ for  $\delta^{18}$ O and 2.40 ‰ for  $\delta^{13}$ C, while these values are 0.29 ‰ for  $\delta^{18}$ O and 0.55 for  $\delta^{13}$ C for the growth line. Based on one-tailed t-tests with a 0.05 level of significance, there is a statistically significant difference between the mean  $\delta^{18}$ O value of -1.28 ± 0.80 ‰ for the ontogenetic sequence and -0.73 ± 0.29 ‰ for the growth line, and between the mean  $\delta^{13}$ C value of -1.28 ± 2.40 ‰ for the ontogenetic sequence and -0.31 ± 0.55 ‰ for the growth line. The sample taken from the E2 concretion returned a  $\delta^{18}$ O value of -1.18 ‰ and a  $\delta^{13}$ C value of 0.18 ‰. Three cement samples also returned values, shown on Figure 35.



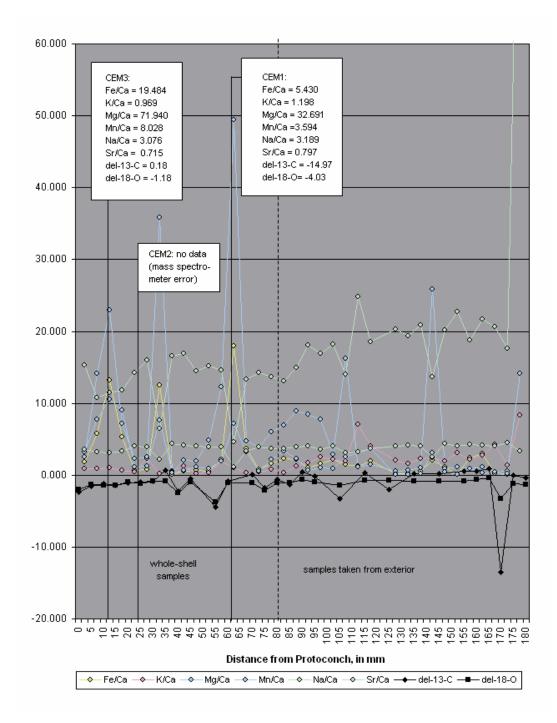



FIGURE 31—Sclerochronology of Eutrephoceras Specimen E2

The minor element sclerochronology of *Eutrephoceras* specimen E2 shows clearly the relationship between diagenetic alteration of shell and cementation. Solid vertical lines, indicating the presence of cement, coincide with relative maxima in Fe/Ca, Mg/Ca, and Mn/Ca, which are minima in Na/Ca.



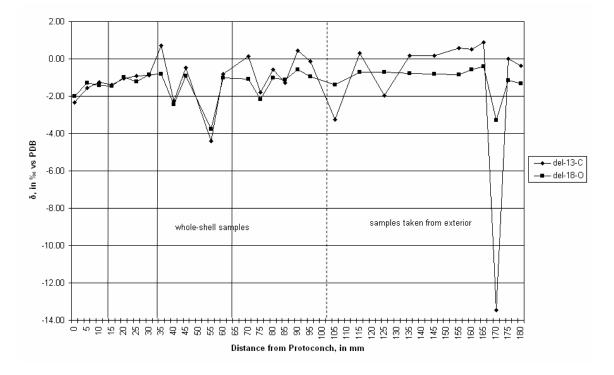
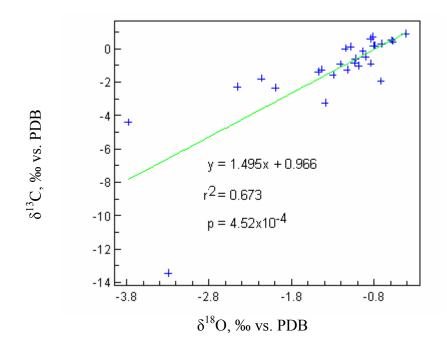




FIGURE 32—Stable Isotope Sclerochronology of Eutrephoceras Specimen E2

The stable isotope sclerochronology of the Eutrephoceras specimen shows parallel curves for  $\delta^{18}$ O and  $\delta^{13}$ C, with nearly all minima and maxima coinciding. Both curves show greater fluctuations before distance = 30 mm. Once again, solid vertical lines indicate the location of cement.



**FIGURE 33**— $\delta^{18}$ O Versus  $\delta^{13}$ C for *Eutrephoceras* Specimen E2



The relationship between  $\delta^{18}$ O and  $\delta^{13}$ C is positive, with an r<sup>2</sup> value of 0.673 and a p value of 4.52 x 10<sup>-4</sup>. The majority of data points cluster from -2‰ to 0.5‰ for  $\delta^{13}$ C and -0.5‰ to -1.5‰ for  $\delta^{18}$ O.



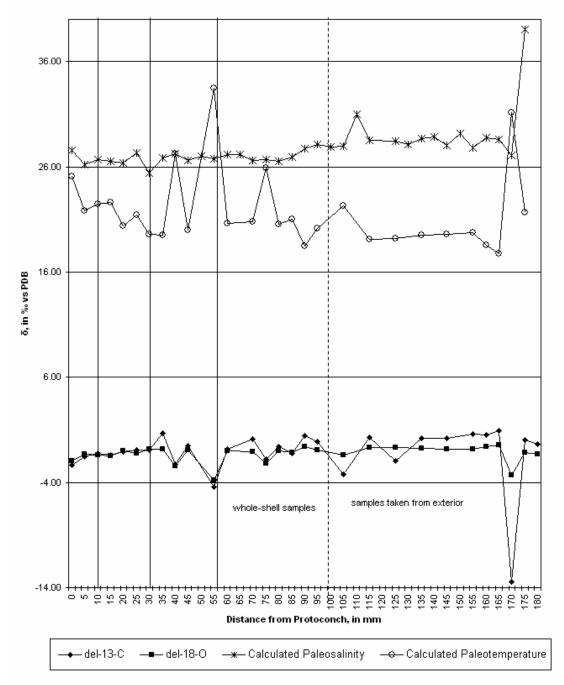



FIGURE 34—Calculated Paleotemperature and Paleosalinity for *Eutrephoceras* Specimen E2

Calculated paleotemperature shows several fluctuations, with the largest being spaced at 55, 105, and 170 mm from the protoconch. Paleosalinity coincides with the isotopic trends for the first half of the ontogenetic sequence.



### 3.4 Discussion

3.4.1. Inoceramus: The slight negative correlation between  $\delta^{18}$ O and  $\delta^{13}$ C in *Inoceramus* specimen I2 (Figure 24) is characteristic of bivalves with a slow rate of metabolism (Ivany et al., 2003). Instead of reflecting metabolism, the isotopic signature in such mollusks reflects environmental parameters such as salinity and temperature. In the Western Interior Seaway, a specimen of the bivalve Artica ovata (Fatherree, 1995) also showed a negative correlation between stable isotopes. This pattern was noted for the Recent bivalve Adamussium colbecki, an Antarctic scallop (Barrerra et al., 1990). The Recent Mercenaria mercenaria specimen from the Long Island Sound examined by Elliot et al. (2003) also showed such a correlation, as did the Eocene Cucullaea raea after 6 mm of ontogenetic growth (Dutton et al., 2002). In contrast, Mercenaria mercenaria specimens found farther south showed a positive correlation between  $\delta^{18}O$  and  $\delta^{13}C$ (Elliot et. al., 2003), as did the Cucullaea raea before 6 mm growth. Previous studies of *Inoceramus* also revealed positive correlations between  $\delta^{18}$ O and  $\delta^{13}$ C. Tourtelot and Rye (1969) found a positive correlation between stable isotopes in both the aragonitic and calcitic layers of an *Inoceramus* specimen, though their sequences for aragonite and calcite were limited to only had nine and ten data points, respectively. The ontogenetically earliest three of eight samples taken by Fatheree (1995) showed a positive relationship  $\delta^{18}$ O and  $\delta^{13}$ C, whereas the ontogenetically latest four showed a negative correlation. Whittaker et al. (1988) showed a similar pattern for a contemporaneous (but farther north) Inoceramus. Of the 25 samples taken from *Inoceramus* specimen I2, the first six to eight show a positive relationship between  $\delta^{18}$ O and  $\delta^{13}$ C (Figure 23). This is likely the signature of a metabolic rate that decreases with



age, which is common in bivalves as energy in adulthood is redirected to reproductive maturation and spawning (Ivany et al., 2003). The inoceramid used in Fatheree et al. (1995) was from the *Baculites compressus* biozone in South Dakota, as was the *Inoceramus* specimen I2 used in this study. Both show  $\delta^{18}$ O and  $\delta^{13}$ C related positively for the first ~ 15 cm of (time-averaged) growth, suggesting that metabolic rate decreases at approximately the same time in each specimen.

Interpretations of ontogenetic trends in  $\delta^{18}$ O,  $\delta^{13}$ C, and calculated temperature are hampered by the time-averaging present in the data. The 22.5-degree total temperature range of 26.3 to 48.8 °C (Figure 25) is clearly unrealistic for a shallow ocean during a warm greenhouse climate interval. However, two more realistic temperatures can be found on the paleotemperature curve for the *Inoceramus*, 34.0 and 26.4 °C, at the two relative minima. While it should be remembered that these temperatures are influenced time-averaging inherent in the slowly deposited nacreous structure, they are clearly different from the remainder of the temperature data points. These points appear to represent marine conditions typical of the overlying water mass. These could be initiated by seasonal changes in oceanic circulation which produce a mixing of the water column. The length of such an interval with respect to the length of intervals with bottom-water isotopic signatures is unknown, because the *Inoceramus* could slow shell precipitation at such times and therefore produce an isotopic record biased towards bottom-water conditions.



While intervals of bottom-water can be identified in the sclerochronology of *Inoceramus* specimen I2, they cannot be readily explained. The heavy  $\delta^{13}$ C and light  $\delta^{18}$ O values are typical of Western Interior Seaway epifauna, with  $\delta^{13}$ C and  $\delta^{18}$ O values of 0.77 to 3.12‰ and -2.10 to -5.34, respectively, found for *Anomia*. On the other hand, *Inoceramus* remains found outside of the Western Interior Seaway do not show such isotopic ratios. For instance, those found in Mid-Late Campananian deep-ocean environments in the South Atlantic produced average  $\delta^{13}$ C and  $\delta^{18}$ O values of 1.38 ± 0.05‰ and 0.70 ± 0.14‰, respectively (Saltzman and Barron, 1982). Therefore, it is unlikely that the isotopic ratios in the *Inoceramus* represent biological factors peculiar to *Inoceramus*. Therefore, the bottom-water represents an isotopically unique environment.

An interesting observation with regards is that the salinity recorded by *Inoceramus* I2 stays close to normal marine conditions (~33‰) throughout ontogeny. However, using the  $\delta^{18}$ O value of -1.27‰ for the Western Interior Seaway and assuming a decrease of 1‰ in  $\delta_w$  for every 5‰ increase in salinity (Epstein and Mayeda, 1953), in order to bring the *Inoceramus* paleotemperature down the ~30 °C necessary for shell precipitation. Even if the salinity equation used in this study is discarded, however, using the  $\delta^{18}$ O value of -1.27‰ for the Western Interior Seaway to reach realistic paleotemperatures for the *Inoceramus*, salinities in excess of 58‰ are needed, which would be inhospitable to *Anomia*. Therefore, salinity is likely not the cause for the disparity between bottom-water and the overlying water mass. If instead, the salinity value is accepted,  $\delta^{18}$ O of the bottom-water would have to be -3.70‰ to produce realistic paleotemperatures. An absurdly depleted freshwater input of -78‰ is needed to produce this value, and this would surely leave a signature on the Sr/Na ratios of the shells.



Another mechanism for reaching this value is unknown, as changing the signal of freshwater between -5 and -25‰ does not significantly affect the  $\delta^{18}$ O result for seawater, and increasing the quantity of freshwater input would lower the  $\delta^{18}$ O but also change salinity and provide light  $\delta^{13}$ C. The  $\delta^{13}$ C values of the epifauna are equally difficult to explain. Escape of methane present in the sediments would contribute  $\delta^{13}$ C on the order of -15 to -20‰, consistent with the  $\delta^{13}$ C values of shells for infaunal organisms but not those for epifaunal organisms. Addition of freshwater would likewise contribute negative  $\delta^{13}$ C isotopes. Ocean anoxia is know to correlate with heavy  $\delta^{13}$ C values in the unoxidized organic carbon, but how these values could be incorporated in molluscan shell is unknown. Therefore, at this time, it must be concluded that the light  $\delta^{18}$ O and heavy  $\delta^{13}$ C of the molluscan epifauna represent a distinct geochemical environment, without explanation, that may at times be mixed or replaced by water from the overlying water mass.

The length of cycles present in  $\delta^{18}$ O,  $\delta^{13}$ C, and calculated temperature are impossible to interpret numerically as it is unknown how many sub-layers within the thin aragonitic shell each sampling penetrated and the amount of time each layer represents (which may differ between layers). These ambiguities could be circumvented if a specimen could be sampled, using a microscope-mounted drill, at a fine enough scale. Considering that the entire aragonitic layer for specimen I2 is ~1 mm thick, this does not seem feasible. A better alternative is to find *Inoceramus* specimens with intact outer calcitic layers, which accreted along the growth axis, and therefore can be sampled throughout ontogeny. The prismatic calcite layer can unfortunately be fragile, as it is usually separated from the aragonitic layer and fragmented, but sampling a reasonably



large calcitic shell piece (that can be readily oriented with respect to ontogeny) would resolve many questions about the bivalve.

3.4.2. Baculites: The slight positive correlation between  $\delta^{18}$ O and  $\delta^{13}$ C (Figures 28 and 29) is characteristic of a mollusk that is secreting shell that is influenced by metabolic CO<sub>2</sub>, usually implying a rapid metabolic rate (Ivany et al., 2003). A negative correlation between these two variables was also present for *Baculites* specimens from the Western Interior Seaway examined by Tourtelot and Rye (1969) and Forester et al. (1977). However, Whittaker et al. (1988) found well-defined negative correlations between stable isotopes in *Baculites*. It is also present in the first few samples of the Baculites studied by Fatherree et al. (1998). Their samples taken later in the ontogeny of *Baculites* showed a negative correlation, which most likely indicates a decrease in the baculitid's rate of growth. A useful follow-up study would be examining the relationship between  $\delta^{18}$ O and  $\delta^{13}$ C with respect to the diameter of the baculite, preferably using fossils with longer contiguous shell records. The fluctuations in  $\delta^{18}$ O, salinity, and temperature do not appear to be significant, and imply that the baculitid was living in the upper/intermediate water mass for the time span represented in the shell precipitated. The minima in  $\delta^{13}$ C are not associated with changes in salinity, so likely do not represent migration into bottom-water. These fluctuations could be due to fluctuations in dissolved inorganic carbon within the water column, seasonal changes in food source, or alteration that is not coincident with minor element alteration.

The temperature recorded by *Baculites* specimen B7, excluding the outlier of 24.2 <sup>o</sup>C at 25 mm from the ontogenetically earliest sample (a product of an unusually high Na/Ca ratio) ranges from 20.2 to 22.3 <sup>o</sup>C. This range represents reasonable living



conditions for a mollusk, and reasonable paleotemperatures for a shallow marine setting during a greenhouse climate interval. Forester et al. (1977) derived a temperature range from 17 to 25 °C for a 10-cm Baculites compressus var. robinsoni of the Western Interior Seaway. Fatherree et al. (1998) found an even greater temperature range, 19.7 to 29.7 °C, for their 44-cm ontogenetic sequence of a *Baculites compressus* found at Game Ranch. Because the temperature range for that specimen depends on the decrease in calculated temperature through ontogeny, within a 2.5-cm segment, however, the temperature difference is 0.4 to 5.8  $^{\circ}$ C, most often ~2.5 $^{\circ}$ C. This is comparable to the range for baculitid B7. Because of the truncated temperature range, the ontogenetic growth in the specimen likely represents less than one year, as is further suggestede by Fatherree et al.'s (1998) analysis. Recent *Nautilus* in the wild grows 9-44 mm/yr, with 24-44 mm/yr for adolescent individuals (Saunders, 1983). This should be considered a minimum growth rate for the *Baculites* because *Nautilus* must precipitate shell in a cold-water, high-pressure environment. Both of these physical factors are correlated with slower shell precipitation in Recent mollusks (Mann, 1992).

*3.4.3. Eutrephoceras:* Compared to the *Eutrephoceras* specimens studied by Landman et al. (1983), the *Eutrephoceras* in this study has a similar, but statistically significant, positive correlation between  $\delta^{18}$ O and  $\delta^{13}$ C (Figure 33). Recent *Nautilus* individuals raised in an aquarium instead show generally negative correlations, except for the first few millimeters of growth (Landman et al., 1984). This cannot be the effect of changes in feeding habits, as the majority of the ontogenetic sequence for the aquariaraised specimens was represented by pre-hatching growth. Whether the  $\delta^{13}$ C of the aquarium water changed over the period of study is unknown, as is the general health of



the organisms, who died shortly after hatching and precipitated abnormally-shaped shells. As in the *Nautilus* and in the *Eutrephoceras* studied by Landman et al. (1983), the *Eutrephoceras* specimen E2 shows an increase to heavier isotopes in the first few centimeters of growth. In addition, the variability in isotopes prior to a distance of 35 mm from the E2 protoconch is low. This suggests a protected environment for the young nautiloid, presumably the egg sac. Through ontogeny, the *Eutrephoceras* shell shows slowly decreasing paleosalinities, likely reflecting offshore migration, as in Recent *Sepia* (Bettencourt and Guerra, 1999). With paleosalinities of ~27‰ during the first 75 mm of phragmacone accretion, these are comparable to the salinities calculated for *Placenticeras*, so likely represent the uppermost waters of the Western Interior Seaway. The sharp temperature drop prior to 35 mm could represent the migration out of a near-planktic mode of life into one where the organism is living in colder water and swimming actively through the water column, where it accumulates both seawater carbonate and metabolic carbon with slightly varying isotopic signature.

If the three largest temperature peaks on Figure 34 represent an annual cycle, the *Eutrephoceras* is growing at 60-80 mm in a year, slightly higher than the average growth rate for adolescent *Nautilus*, and comparable to the growth rate for the cuttlefish *Sepia offinalis* living off the coast of Spain (Bettencourt and Guerra, 1999). Because the habitat of the *Eutrephoceras* is determined to be warm-water, the growth rate for *Sepia* is realistic.

The  $\delta^{13}$ C curve for Eutrephoceras specimen E2 shows a  $\delta^{13}$ C range of -4.2 to -0.4‰, comparable in values and range to the *Eutrephoceras* in Landman et al. (1983) and in range alone to *Nautilus* (Landman et al., 1994). There is a single very negative  $\delta^{13}$ C



excursion, late in ontogeny, which likely represents a migration into the bottom-water, because the salinity increases dramatically at the same time. Other excursions at 75 and 105 mm into this bottom water may be recorded by the  $\delta^{13}$ C and salinity curves, with lower-amplitude  $\delta^{13}$ C deviations. Why the *Eutrephoceras* would migrate into the bottomwater is a good question. It is possible that a preferred food source was present in the benthic sediments, and if this is the case, this research supports the notion of nektobenthic ammonites hovering above the seafloor when feeding. Another potential explanation is that the bottom-waters provided refuge from vertebrate predators during times of susceptibility, such as spawning or septal secretion. On the other hand, the signatures may instead record mixing events with the light-  $\delta^{18}$ O bottom water.



#### 4. CONCLUSIONS

When performing stable isotope sclerochronology, or when using stable isotopes in molluscan shell for paleoclimate proxies, diagenetically altered shell must be avoided. The results of this study suggest that for paleotemperature reconstruction based on the isotopic analysis of aragonite, one must be selective. Specimens preserved in shale are preferable, as shown by the "Mode of Preservation" suite and the higher standard deviations for paleotemperatures derived from fossils found in concretions (e.g., Trask Ranch Inoceramus versus Game Ranch Inoceramus). In ammonites, phragmacones rather than septa should be sampled, given the greater likelihood of alteration in the latter. Opalescent or non-opalescent shell is acceptable, but color appears to have a slight effect on  $\delta^{18}$ O which may affect diagenetic alteration. For the most part,  $\delta^{18}$ O values are fairly robust even in the presence of cement, although, as seen at the Trask Ranch, the cementation phase may be a crucial factor in that later, meteoric cements can have a substantial influence on  $\delta^{18}$ O. Based on the analysis, a series of minor-element filters were developed for aragonitic shell at the three sites. Anomalously low  $\delta^{18}$ O values resulted from Sr/Ca ratios > 1.8 mMol/Mol, Na/Ca ratios > 10 mMol/Mol, Mn/Ca ratios < 11 mMol/Mol, Mg/Ca ratios < 6.5 mMol/Mol, and Fe/Ca ratios < 7 mMol/Mol. These limits were derived for the Kremmling sampling site, which had the greatest quantity of altered shell. Comparable values exist for the Trask Ranch site, but more data points of shell with altered  $\delta^{18}$ O values are needed to define useful limits. The results for alteration of aragonitic  $\delta^{18}$ O should not be extended to calcite without separate



investigation of calcitic mollusks, because the different crystal structure of calcitic shells will react differently to the influx of diagenetic waters.

To glean information about paleoproductivity, molluscan diet, or the presence of methane using  $\delta^{13}$ C ratios, a different set of criteria apply. Shale or concretions may be used, so long as neither contains cement directly in the shells. Septa and phragmacone samples both provide useful information, as most of the difference in isotopes between septa and phragmacone samples was in  $\delta^{18}$ O. Opalescence and shell color had little bearing on  $\delta^{13}$ C values for the sites investigated.

Furthermore, the concentrations of certain minor elements, such as K, Na, and Al, appear to be quite robust. Sr is also robust when meteoric water is not implicated in diagenesis. These elements are not readily altered by the same diagenetic processes that affect  $\delta^{18}$ O and  $\delta^{13}$ C. Other minor elements, such as Fe, Mg, and Mn, are easily altered.

Implementation of an empirically-derived Sr/Ca-Mg/Ca filter eliminated isotopically light, altered specimens. When these data points were removed, fields emerged on stable isotope cross-plots for each genus investigated. The confidence limits for the benthic bivalve *Inoceramus* did not overlap the nektic ammonites *Baculites*, *Placenticeras*, and *Hoploscaphites*, implying that the environments were distinct. Calculations from the data support a very light  $\delta^{13}$ C, methane-rich benthic habitat. The salinity figure for the intermediate/upper water is below normal salinity and the salinity figure for the bottom-water is close to normal salinity. There is no evidence for a distinct surface water mass, as a gradational series of paleosalinities and paleotemperatures were derived for the genera present in the *Baculites compressus/cuneatus* biozones. These include:



- (1) Game Ranch *Baculites*:  $S = 30.6 \pm 0.8\%$ ,  $T = 20.9 \pm 4.9$  °C
- (2) Trask Ranch *Baculites:*  $S = 29.9 \pm 2.0\%$ ,  $T = 24.8 \pm 4.2$  °C
- (3) Game Ranch *Placenticeras:*  $S = 28.1 \pm 1.1\%$ ,  $T = 30.1 \pm 4.9$  °C
- (4) Game Ranch *Hoploscaphites*: S = 27.3% (n = 1), T = 36.5 (n = 1) °C
- (5) Game Ranch *Inoceramus:*  $S = 31.1 \pm 1.9\%$ ,  $T = 36.1 \pm 3.2$  °C
- (6) Trask Ranch *Inoceramus:*  $S = 27.7 \pm 9.6\%$ ,  $T = 31.5 \pm 4.9$  °C
- (7) Game Ranch *Nymphalucina*:  $S = 31.7 \pm 0.6\%$ ,  $T = 14.8 \pm 1.2$  °C

The clearly unrealistic paleotemperatures for the benthic genera such as *Inoceranus* (and possibly the *Hoploscaphites* as well) cannot be explained at present. Methane seeps, a feature of the Western Interior Seaway during the Campanian, would contribute isotopically light  $\delta^{13}$ C like the concretions and cements, not the heavy values seen in shell for this dataset and in prior research. Manipulation of the values for salinity and  $\delta^{18}O_{(freshwater)}$  in order to produce reasonable paleotemperatures results in salinities and freshwater geochemistries that are as unrealistic as the paleotemperatures were. Shale and concretions are both viable data sources for strontium and sodium data, as are both septa and phragmacone samples of ammonites. Opalescent shell should be selected, and color may have some influence on the depletion of Sr/Ca ratios. The presence of cementation, however, generally need not worry the paleosalinity investigator, at least at the localities investigated in this study.

 $\delta^{18}$ O and  $\delta^{13}$ C sclerochronology of mollusks screened by the minor element filter reveals that *Inoceramus* precipitates most of its shell in bottom waters of unusual isotopic composition. There are two excursions into more normal paleotemperatures, but these do not correlate with any changes in the  $\delta^{13}$ C of the benthic organisms. Because *Inoceramus* 



is sessile, these excursions must represent environmental changes. On the other hand, *Eutrephoceras* precipitates most of its shell in the upper/intermediate waters but shows excursions which likely reflect migration into the bottom waters. In the *Eutrephoceras*, changes in  $\delta^{18}$ O are concurrent with and of the same magnitude as changes in  $\delta^{13}$ C. *Baculites* appears to remain in the upper/intermediate waters, but shows fluctuations in  $\delta^{13}$ C that could represent oceanic productivity and/or the organism's food source.



#### REFERENCES

- Abdel-Gawad, G. 1986, Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda, and Bivalvia) of the Middle Vistula Valley, central Poland: Acta Geologica Polonica, v. 36.
- Auclair, A., Lecuyer, C., Bucher, H., and Sheppard, S., 2004, Carbon and oxygen isotope composition of *Nautilus macromphalus*: a record of thermocline waters off New Calendonia: Chemical Geology: v. 207, p. 91-100.
- Barrerra, E., Tevesz, M., and Carter, J., 1990, Variations in oxygen and carbon isotopic compositions and microstructure of the shell of *Adamussium colbecki* (Bivalvia): PALAIOS, v. 5, p. 149-159.
- Besnosov, N., and Michailova, I, 1991, Higher taxa of Jurassic and Cretaceous Ammonitida: Paleontological Journal, v. 25, p. 3-18.
- Bettencourt, V., and Guerra, A., 1999, Carbon- and oxygen-isotope composition of the cuttlebone of *Sepia officinalis*: a tool for predicting ecological information?: Marine Biology, v. 133, p. 651-657.
- Brand, U., 1983, Geochemical analysis of Nautilus pompilius from Fiji, South Pacific: Marine Geology, v. 53, p. M1-M5.
- Brand, U., 1986, Paleoenvironmental analysis of Middle Jurassic (Callovian) ammonoids from Poland: trace elements and stable isotopes: Journal of Paleontology, v. 60, p. 293-301.
- Brand, U., 1994, Morphochemical and replacement diagenesis of carbonates: in Wolf, K. and Chilingarian, G., eds., Diagenesis, IV: Elsevier Science, Amsterdam, p. 217-282.
- Buchardt, B., 1977, Oxygen isotope ratios from shell material from the Danish Middle Paleocene (Selandian) deposits and their interpretation as paleotemperature indicators: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 22, p. 209-230.
  - Buchardt, B., and Weiner, S, 1981, Diagenesis of aragonite from Upper Cretaceous ammonites: a geochemical case-study: Sedimentology, v. 28, p. 423-438.



- Cochran, K., Kallenberg, K., Landman, N., Harries, P., and Cobban, W, 2004, Effect of the preservation of Late Cretaceous mollusks from the Western Interior Seaway of North America. Part I: Sr, O, and C Isotopes: poster presented at Geological Society of America Annual Meeting, Salt Lake City.
- Cochran, J., Rye, D., and Landman, N., 1981, Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies: Paleobiology, v. 7, p. 469-480.
- Constantz, B., 1986, The primary surface area of corals and variations in their susceptibility to diagenesis: *in* Schroeder, I. and Purser, B., eds., Reef Diagenesis: Springer-Verlag, Berlin.
- Dodd, J., 1967, Magnesium and strontium in calcareous skeletons: a review: Journal of Paleontology, v. 41, p. 1313-1328.
- Dodd, J., and Crisp, E., 1982, Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies: Palaeoecology, v. 38, p. 45-46.
- Dutton, A., Lohmann, K., and Zinsmeister, J., 2002, Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica: Paleoceanography, v. 17, p. 1-13.
  - Elorza, J., and García-Garmilla, F., 1996, Petrological and geochemical evidence for diagenesis of inoceramid bivalve shells in the Plentzia Formation (Upper Cretaceous, Basque-Cantabrian Region, northern Spain): Cretaceous Research, v. 17, p. 479-503.
- Elliot, M., deMenocal, P., Linsley, B., and Howe, S., 2003, Environmental controls on the stable isotopic composition of *Mercenaria mercenaria*: Potential application to paleoenvironmental studies: Geochemistry, Geophysics, Geosystems, v. 4, p. 1-16.
- Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H., 1953, Revised carbonatewater isotopic temperature scale: Bulletin of the Geological Society of America, v. 64, p. 1315-1326.
- Epstein, S., and Mayeda, T., 1953, Variation of O18 content of waters from natural sources: Geochimica et Cosmochimica Acta, v. 4, p. 213-224.
- Fatheree, J., Harries, P., and Quinn, T., 1998, Oxygen and carbon isotope dissection of *Baculites compressus* (Mollusca: Cephalopoda) from the Pierre Shale (Upper Campanian) of South Dakota: implications for paleoenvironment reconstructions: PALAIOS, v. 13, p. 376-385.

Fatheree, J., 1995, Isotope Paleontology of Selected Molluscs from the Upper Pierre 141



Shale (Late Campanian - Early Maastrichtian) of the Cretaceous Western Interior Seaway of North America: MS Thesis, University of South Florida, Tampa, 70 p.

- Forester, R., Caldwell, W., and Oro, F., 1977, Oxygen and carbon isotopic study of ammonites from the Late Cretaceous Bearpaw Formation in southwestern Saskatchwewan: Canadian Journal of Earth Sciences, v. 14, p. 2086-2100.
- Grossman, E., and Ku, T., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology (Isotope Geoscience Section), v. 59, p. 59-74.
- Hallam, A., and Price, N., 1966, Strontium contents of Recent and fossil aragonitic cephalopod shells: Nature, v. 212, p. 25-27.
- Harries, P., 2004, personal communication.
- Holmden, C., and Hudson, J., 2003, <sup>87</sup>Sr/<sup>86</sup>Sr and Sr/Ca investigation of Jurassic mollusks from Scotland: implications for paleosalinities and the Sr/Ca ratio of seawater: GSA Bulletin, v. 115, p. 1249-1264.
- Howard, R., Shultz, A., and Schroeder, W., 2005, Methane-induced cementation in a transgressive nearshore setting, northern Gulf of Mexico: Southeastern Geology, v. 43, p. 137-155.
- Hughes, W., and Rosenberg, G., 1991, A metabolic model for the determination of shell composition in the bivalve mollusk, *Mytilus edulis*: Lethaia, v. 24, p. 83-96.
- Ivany, L., Wilkinson, B., and Jones, D., 2003, Using stable isotopic data to resolve rate and duration of growth throughout ontogeny: an example from the surf clam, *Spisula solidissima*: PALAIOS, v. 18, p. 126-137.
- Krause, F., Clark, J., Sayegh, S., Collom, C, and Johnston, P., 2003, Submarine carbonate diagenesis in a fossil methane-metabolizing community: Campanian coquinoid limestone in the Pierre Shale "Teepee Buttes," Western Interior Seaway, Pueblo region, Colorado, USA: Abstracts with Programs – Geological Society of America Annual Meeting, Nov. 2-5, Seattle, WA, USA.

Landman, N., 2005, personal communication.

Landman, N., Cochran, J., Rye, D., Tanabe, K., and Arnold, J., 1994, Early life history of *Nautilus*: evidence from isotopic analysis of aquarium-reared specimens: Paleobiology, v. 20, p. 40-51.



- Landman, N., Rye, D., and Shelton, K., 1983, Early ontogeny of *Eutrephoceras* compared to Recent *Nautilus* and Mesozoic ammonites: evidence from shell morphology and light stable isotopes: Paleobiology, v. 9, p. 269-279.
- Larson, N., Jorgensen, S., Farrar, R., and Larson, P., 1997, Ammonites and Other Cephalopods of the Pierre Seaway: Geoscience Press, Tucson, 148 p.
- Mann, K., 1992, Physiological, environmental, and mineralogical controls on Mg and Sr concentrations in *Nautilus*: Journal of Paleontology, v. 66, p. 620-636.
- McArthur, J., Kennedy, W., Chen, M., Thirlwall, M., and Gale, A., 1993, Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US Western Interior: Palaeogeography, Palaeoclimatology, Palaeoclimatology, v. 108, p. 95-119.
- Mitchell, L., Fallick, A., and Curry, G., 1994, Stable carbon and oxygen isotope compositions of mollusc shells from Britain and New Zealand: Palaeogeography, Palaeoclimatology, Palaeoclimatology, v. 111, p. 207-216.
- Pagani, M., and Arthur, M., 1998, Stable isotopic studies of Cenomanian-Turonian proximal marine fauna from the U.S. Western Interior Seaway. SEPM Concepts in Sedimentology and Paleontology Publiation 6 (Paleogeography and Paleoenvironments of the Cretaceous Western Interior Seaway, USA): SEPM, publication location, ## p.
- Purton, L., Shields, G., Brasier, M., and Grine, G., 1999, Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks: Geology, v. 27, p. 1083-1086.
- Ragland, P., Pilkey, O., and Blackwelder, B., 1979, Diagenetic changes in the elemental composition of unrecrystallized mollusk shells: Chemical Geology, v. 25, p. 123-134.
- Rucker, J., and Valentine, J., 1961, Salinity response of trace element concentration in *Crassostrea virginica*: Nature, v. 190, p. 1099-1100.
- Saltzman, E., and Barron, E., 1982, Deep circulation in the Late Cretaceous: oxygen isotope paleotemperatures from *Inoceramus* remains in DSDP cores: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 40, p. 167-181.
- Saunders, W., 1983, Natural rates of growth and longevity of *Nautilus belauensis*: Paleobiology, v. 9, p. 280-288.
- Schmidt, M., 1997, Paleoceanography of the North American Western Interior Seaway based on geochemical analysis of carbonate shell material: MS Thesis, University of South Florida, Tampa, 81 p.

Scott, G. R., and Cobban, W., 1986, Geologic and biostratigraphic map of the Pierre



Shale in the Colorado Springs – Pueblo area, Colorado: USGS Miscellaneous Investigations Series Map I-1627.

- Slingerland, R., Kump, L., Arthur, M., Fawcett, P., Sageman, B., and Barron, E., 1996, Estuarine circulation in the Turonian Western Interior seaway of North America: GSA Bulletin, v. 108, p. 941-952.
- Speden, I., 1970, Bulletin 33 of the Peabody Museum of Natural History, Yale University: The Type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 2, Systematics of the Bivalvia: New Haven, CT, ### p.
- Stahl, W., and Jordan, R., 1969, General considerations on isotopic paleotemperature determinations and analyses on Jurassic ammonites: Earth and Planetary Science Letters, v. 6, p. 173-178.
- Stanley, S., and Hardie, L., 1998, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 144, p. 3-19.
- Teys, R., Kiselevskiy, M., and Naydin, D., 1978, Oxygen and carbon isotopic compostion of organogenic carbonates and concretions in the Late Cretaceous rocks of northwestern Siberia: Geokhimiya (translation), v. 1, p. 111-118.
- Timofeeff, M., Lowenstein, T., da Silva, M., and Harris, N., 2006, Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions of Cretaceous halites: Geochimica et Cosmochimica Acta, v. 70, p.1977-1994.
  - Tsujita, C., and Westermann, G., 1998, Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 144, p. 135-160.
- Turekian, K., and Armstrong, R., 1960, Magnesium, strontium, and barium concentrations and calcite-aragonite ratios of some Recent molluscan shells: Journal of Marine Research, v. 18, p. 133-
- Tourtelot, H., and Rye, R., 1969, Distribution of oxygen and carbon isotopes in fossils of Late Cretaceous age, Western Interior region of North America: GSA Bulletin, v. 80, p. 1903-1922.
- Veizer, J., and Fritz, P., 1976, Possible control of post-depositional alteration in oxygen paleotemperature determination: Earth and Planetary Science Letters, v. 33, p. 255-260.



- Walaszczyk, I., and Cobban, W., 2000, Special Papers in Paleontology: Inoceramid Faunas and Biostratigraphy of the Upper Turonian – Lower Coniacian of the Western Interior of the United States: Palaeontological Association, London, ## p.
- Whittaker, S., Kyser, T., and Caldwell, W., 1986, Paleoenvironmental geochemistry of the Claggett marine cyclothem in south-central Saskatchewan: Canadian Journal of Earth Sciences, v. 24, p. 967-984.
- Wright, E., 1987, Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America: GSA Bulletin, v. 99, p. 480-490.
- Zakharov, Y., Smyshlyaeva, O., Tanabe,K., Shigeta, Y., Maeda, H., Ignatiev, A., Velivetskaya, T., Afanasyeva, T., Popov, A., Golozubov, V., Kolyada, A., Cherbadzhi, A., and Moriya, K., 2005, Seasonal temperature fluctuations int he high northern latitudes during the Cretaceous Period: isotopic evidence from Albian and Coniacian shallow-water invertebrates of the Talavka River Basin, Koryak Upland, Russian Far East: Cretaceous Research, v. 5, p. 1-20.



APPENDICES



## APPENDIX A: SHELL ALTERATION MASS SPECTROMETER DATA

#### Mode of Preservation Suite

#### Preserved Directly in Shale:

| Sample | Location       | Genus         | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |
|--------|----------------|---------------|--------------------------|--------------------------|
| MP-1   | Game Ranch, SD | Placenticeras | -3.58                    | -1.72                    |
| MP-2   | Game Ranch, SD | Placenticeras | -1.26                    | -0.93                    |
| MP-3   | Game Ranch, SD | Placenticeras | -2.90                    | -1.65                    |
| MP-4   | Game Ranch, SD | Inoceramus    | -3.05                    | 4.32                     |
| MP-5   | Game Ranch, SD | Inoceramus    | -4.59                    | 5.04                     |
| MP-6   | Game Ranch, SD | Baculites     | -0.35                    | -0.81                    |
| MP-7   | Game Ranch, SD | Baculites     | -3.09                    | 1.44                     |
| MP-8   | Game Ranch, SD | Nymphalucina  | 0.39                     | 1.02                     |
| MP-9   | Game Ranch, SD | Nymphalucina  | 0.04                     | -18.20                   |

Preserved in Concretions:

| Sample | Location        | Genus         | δ <sup>18</sup> O, vs. PDB | $\delta^{13}$ C, vs. PDB |
|--------|-----------------|---------------|----------------------------|--------------------------|
| MP-10  | Kremmling, CO   | Placenticeras | -18.46                     | -3.99                    |
| MP-11  | Kremmling, CO   | Placenticeras | -15.51                     | -6.72                    |
| MP-12  | Kremmling, CO   | Placenticeras | -15.13                     | -7.44                    |
| MP-13  | Game Ranch, SD  | Inoceramus    | -4.51                      | 2.80                     |
| MP-14  | Game Ranch, SD  | Inoceramus    | -3.35                      | -0.91                    |
| MP-15  | Trask Ranch, SD | Inoceramus    | -1.38                      | 5.66                     |
| MP-16  | Game Ranch, SD  | Baculites     | -1.61                      | -0.46                    |
| MP-17  | Game Ranch, SD  | Baculites     | -0.64                      | -1.42                    |
| MP-18  | Trask Ranch, SD | Baculites     | -1.00                      | -1.98                    |
| MP-19  | Trask Ranch, SD | Nymphalucina  | -1.93                      | -2.68                    |
| MP-20  | Trask Ranch, SD | Nymphalucina  | -9.07                      | -13.00                   |



## Shell Testing Location Suite

#### Shell Taken from Septum:

| Sample | Location        | Genus          | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |
|--------|-----------------|----------------|--------------------------|--------------------------|
| SC-1S  | Game Ranch, SD  | Placenticeras  | -3.71                    | -3.74                    |
| SC-2S  | Kremmling, CO   | Baculites      | -13.12                   | -8.64                    |
| SC-3S  | Kremmling, CO   | Placenticeras  | N/A                      | N/A                      |
| SC-4S  | Trask Ranch, SD | Hoploscaphites | -3.69                    | -8.36                    |
| SC-5S  | Trask Ranch, SD | Baculites      | -2.02                    | -4.85                    |
| SC-6S  | Trask Ranch, SD | Baculites      | -3.48                    | -10.07                   |
| SC-7S  | Trask Ranch, SD | Baculites      | -2.96                    | -9.09                    |
| SC-8S  | Trask Ranch, SD | Baculites      | -2.08                    | -10.08                   |
| SC-9S  | Trask Ranch, SD | Baculites      | -3.59                    | -7.58                    |
| SC-10S | Trask Ranch, SD | Baculites      | -1.81                    | -2.47                    |

## Shell Taken from Phragmacone Adjacent to Septum:

| Specimen | Location        | Genus          | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |
|----------|-----------------|----------------|--------------------------|--------------------------|
| SC-1P    | Game Ranch, SD  | Placenticeras  | -2.91                    | -2.67                    |
| SC-2P    | Kremmling, CO   | Baculites      | N/A                      | N/A                      |
| SC-3P    | Kremmling, CO   | Placenticeras  | -8.86                    | -14.18                   |
| SC-4P    | Trask Ranch, SD | Hoploscaphites | -3.64                    | -7.46                    |
| SC-5P    | Trask Ranch, SD | Baculites      | -2.31                    | -3.76                    |
| SC-6P    | Trask Ranch, SD | Baculites      | -2.19                    | -1.79                    |
| SC-7P    | Trask Ranch, SD | Baculites      | -1.85                    | -14.66                   |
| SC-8P    | Trask Ranch, SD | Baculites      | -1.71                    | -1.71                    |
| SC-9P    | Trask Ranch, SD | Baculites      | -2.82                    | -6.29                    |
| SC-10P   | Trask Ranch, SD | Baculites      | -1.36                    | -2.36                    |



## Shell Color Suite

| Kremmling, Colorado, samples |                |                  |                          |                          |  |
|------------------------------|----------------|------------------|--------------------------|--------------------------|--|
| Sample                       | Genus          | Color Class      | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |  |
| SC-1                         | Placenticeras  | Tan              | -16.17                   | -3.74                    |  |
| SC-2                         | Placenticeras  | Cream            | N/A                      | N/A                      |  |
| SC-3                         | Placenticeras  | Moccasin         | -15.58                   | -6.63                    |  |
| SC-4                         | Placenticeras  | Yellow           | -13.06                   | -7.01                    |  |
| SC-5                         | Placenticeras  | Opalescent White | -15.01                   | -6.99                    |  |
| SC-6                         | Hoploscaphites | Moccasin         | -14.65                   | -7.01                    |  |
| SC-7                         | Hoploscaphites | Cream            | -11.15                   | -4.17                    |  |
| SC-8                         | Hoploscaphites | Moccasin         | -14.36                   | -13.07                   |  |
| SC-9                         | Hoploscaphites | Tan              | -14.28                   | -6.48                    |  |
| SC-10                        | Hoploscaphites | Wheat            | -14.25                   | -5.62                    |  |
| SC-11                        | Baculites      | Cream            | -14.63                   | -6.14                    |  |
| SC-12                        | Baculites      | Brown            | -15.06                   | -8.29                    |  |
| SC-13                        | Baculites      | Cream            | -15.17                   | -8.15                    |  |
| SC-14                        | Baculites      | Wheat            | -12.66                   | -7.59                    |  |
| SC-15                        | Baculites      | Yellow           | -15.09                   | -7.12                    |  |
| SC-16                        | Inoceramus     | Tan              | -8.87                    | -0.88                    |  |
| SC-17                        | Inoceramus     | Wheat            | -13.30                   | -6.93                    |  |
| SC-18                        | Inoceramus     | Moccasin         | -14.47                   | -7.67                    |  |
| SC-19                        | Anomia         | Tan              | -5.34                    | 0.77                     |  |
| SC-20                        | Anomia         | Seashell         | -3.92                    | 1.84                     |  |



## Shell Color Suite (Continued)

| Game Ranch, South Dakota, samples |                |                   |                          |                          |  |
|-----------------------------------|----------------|-------------------|--------------------------|--------------------------|--|
| Sample                            | Genus          | Color Class       | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |  |
| SC-21                             | Placenticeras  | Opalescent White  | N/A                      | N/A                      |  |
| SC-22                             | Placenticeras  | Opalescent White  | -3.45                    | -2.77                    |  |
| SC-23                             | Placenticeras  | Linen             | -3.61                    | -2.93                    |  |
| SC-24                             | Placenticeras  | Opalescent White  | -3.12                    | -3.27                    |  |
| SC-25                             | Placenticeras  | Opalescent Yellow | -2.05                    | -1.89                    |  |
| SC-26                             | Hoploscaphites | Moccasin          | -4.51                    | 0.54                     |  |
| SC-27                             | Baculites      | Seashell          | -1.36                    | -1.97                    |  |
| SC-28                             | Baculites      | Opalescent White  | -0.39                    | -1.48                    |  |
| SC-29                             | Baculites      | Opalescent White  | -1.18                    | -0.65                    |  |
| SC-30                             | Baculites      | Linen             | -0.54                    | -0.91                    |  |
| SC-31                             | Baculites      | Opalescent White  | -1.93                    | 0.44                     |  |
| SC-32                             | Inoceramus     | Grey              | -4.54                    | 2.36                     |  |
| SC-33                             | Inoceramus     | Brown             | -4.22                    | 5.24                     |  |
| SC-34                             | Inoceramus     | Orange            | -4.29                    | 4.97                     |  |
| SC-35                             | Inoceramus     | Linen             | -5.26                    | 5.80                     |  |
| SC-36                             | Inoceramus     | Seashell          | -3.98                    | 4.47                     |  |
| SC-37                             | Anomia         | Grey              | -3.87                    | 0.92                     |  |
| SC-38                             | Anomia         | Grey              | -2.10                    | 3.12                     |  |
| SC-39                             | Nymphalucina   | Seashell          | 0.14                     | -0.29                    |  |
| SC-40                             | Nymphalucina   | Cream             | 0.42                     | 1.03                     |  |



## Shell Color Suite (Continued)

| Trask Ranch, South Dakota, samples |                |                     |                          |                          |  |
|------------------------------------|----------------|---------------------|--------------------------|--------------------------|--|
| Sample                             | Genus          | Color Class         | $\delta^{18}$ O, vs. PDB | $\delta^{13}$ C, vs. PDB |  |
| SC-41                              | Hoploscaphites | Tan                 | -4.41                    | -1.10                    |  |
| SC-42                              | Hoploscaphites | Moccasin            | -5.41                    | -7.22                    |  |
| SC-43                              | Hoploscaphites | Linen               | -3.45                    | -2.91                    |  |
| SC-44                              | Hoploscaphites | Orange              | -3.97                    | -7.40                    |  |
| SC-45                              | Hoploscaphites | Opalescent Grey     | -3.11                    | -0.05                    |  |
| SC-46                              | Inoceramus     | Tan                 | -3.46                    | 3.31                     |  |
| SC-47                              | Inoceramus     | Opalescent White    | -3.07                    | 1.43                     |  |
| SC-48                              | Inoceramus     | Moccasin            | -4.06                    | 3.48                     |  |
| SC-49                              | Inoceramus     | Seashell            | -3.84                    | 0.18                     |  |
| SC-50                              | Inoceramus     | Wheat               | -4.34                    | 1.84                     |  |
| SC-51                              | Baculites      | Opalescent White    | -1.18                    | -2.43                    |  |
| SC-52                              | Baculites      | Opalescent Seashell | -3.22                    | -5.17                    |  |
| SC-53                              | Baculites      | Seashell            | -2.27                    | -2.76                    |  |
| SC-54                              | Baculites      | Yellow              | -2.27                    | -6.33                    |  |
| SC-55                              | Baculites      | Brown               | -1.05                    | -2.34                    |  |
| SC-56                              | Drepanocheilus | Wheat               | -5.66                    | -13.65                   |  |
| SC-57                              | Drepanocheilus | Seashell            | -2.31                    | -3.78                    |  |
| SC-58                              | Drepanocheilus | Grey                | -5.89                    | -16.54                   |  |
| SC-59                              | Anisomyon      | Orange              | -6.58                    | -10.76                   |  |
| SC-60                              | Anisomyon      | Seashell            | -6.54                    | -8.58                    |  |



## Cementation Suite

| Kremmlin | ng, Colorado, sam  | ples                                                   |            |                                                                     |
|----------|--------------------|--------------------------------------------------------|------------|---------------------------------------------------------------------|
| Sample   | Shell              | Cement                                                 | Concretion | (δ <sup>18</sup> O, δ <sup>13</sup> C),<br>vs. PDB                  |
| CEM-1    | Hoploscaphite<br>s | Sparry yellow                                          | Grey       | (-12.93, -11.87)<br>(-13.99, -5.92)<br>(-10.64, -9.10)              |
| CEM-2    | Hoploscaphite<br>s | None                                                   | None       | (-13.50, -11.87)<br>None<br>None                                    |
| CEM-3    | Placenticeras      | Sparry clear                                           | Tan        | (-14.45, -7.40)<br>(-17.02, -4.64)<br>(-13.71, -6.63)               |
| CEM-4    | Baculites          | None                                                   | Tan        | (-14.94, -8.00)<br>None<br>(-14.33, -6.54)                          |
| CEM-5    | Baculites          | None                                                   | Tan        | (-14.68, -11.54)<br>None<br>(-12.62, -11.17)                        |
| CEM-6    | Baculites          | Agate moccasin                                         | Tan        | N/A<br>(-6.97, -2.97)<br>(-12.50, -6.39)                            |
| CEM-7    | Baculites          | Sparry white                                           | Grey       | (-14.89, -8.19)<br>(-10.90, -8.52)<br>(-14.07, -11.30)              |
| CEM-8    | Baculites          | Sparry yellow                                          | Grey       | (-15.15, -10.19)<br>(-8.00, -7.57)<br>(-12.87, -13.36)              |
| CEM-9    | Baculites          | <ol> <li>Blocky clear</li> <li>Sparry clear</li> </ol> | None       | (-15.04, -6.90)<br>1. (-23.74, -3.59)<br>2. (-10.03, -7.55)<br>None |
| CEM-10   | Baculites          | <ol> <li>Agate yellow</li> <li>Blocky clear</li> </ol> | Tan        | (-14.43, -6.83)<br>1. (-14.04, -4.94)<br>2. (-14.34, -3.17)<br>None |



## Cementation Suite (Continued)

| Game Rai | nch, South Dakota                 | ı, samples                                                 |                              |                                                                                                      |
|----------|-----------------------------------|------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|
| Sample   | Shell                             | Cement                                                     | Concretion                   | $(\delta^{18}O, \delta^{13}C),$<br>vs. PDB                                                           |
| CEM-11   | Placenticeras                     | None                                                       | None                         | (-3.68, -5.40)<br>None<br>None                                                                       |
| CEM-12   | Placenticeras                     | None                                                       | Yellow-Brown                 | (-4.62, -3.89)<br>None<br>(-1.72, -7.81)                                                             |
| CEM-13   | Baculites                         | None                                                       | Yellow-Brown                 | N/A<br>None<br>(-1.66, -11.00)                                                                       |
| CEM-14   | Baculites                         | None                                                       | None                         | (-1.67, -0.73)<br>None<br>None                                                                       |
| CEM-15   | <i>Baculites</i> (2 samples)      | None                                                       | 1. Red-Brown<br>2. Dark Grey | 1. (-0.53, -0.83)<br>2. N/A<br>None<br>1. (-1.19, -6.83)<br>2. N/A                                   |
| Trask Ra | nch, South Dakote                 | a, samples                                                 |                              |                                                                                                      |
| Sample   | Shell                             | Cement                                                     | Concretion                   | $(\delta^{18}O, \delta^{13}C),$<br>vs. PDB                                                           |
| CEM-16   | Hoploscaphite<br>s                | <ol> <li>Sparry yellow</li> <li>Sparry moccasin</li> </ol> | Dark grey                    | (-1.85, -6.54)<br>1. (-9.24, -12.67)<br>2. (-4.24, -10.45)<br>(-1.68, -17.75)                        |
| CEM-17   | Hoploscaphite<br>s<br>(2 samples) | <ol> <li>Sparry yellow</li> <li>Sparry tan</li> </ol>      | Dark grey                    | 1. (-3.19, -6.88)<br>2. (-2.46, -6.98)<br>1. (-4.53, -10.47)<br>2. (-8.66,-12.84)<br>(-1.80, -18.86) |
| CEM-18   | Hoploscaphite<br>s                | None                                                       | Dark grey                    | (-4.99, -10.34)<br>None<br>(-2.38, -19.14)                                                           |



## Cementation Suite (Continued)

| Trask Ra | nch, South Dakote              | a, samples (continued)                                       | )          |                                                                                                                           |
|----------|--------------------------------|--------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|
| Sample   | Shell                          | Cement                                                       | Concretion | $(\delta^{18}O, \delta^{13}C),$<br>vs. PDB                                                                                |
| CEM-19   | Hoploscaphite<br>s (2 samples) | <ol> <li>Sparry moccasin</li> <li>Sparry moccasin</li> </ol> | Dark grey  | 1. (-4.87, -7.95)         2. (-4.19, -7.18)         1. (-6.03, -10.58)         2. (-6.50, -10.21)         (-1.86, -17.65) |
| CEM-20   | Hoploscaphite<br>s             | None                                                         | Grey       | N/A<br>None<br>(-1.69, -25.09)                                                                                            |
| CEM-21   | Baculites                      | <ol> <li>Sparry tan</li> <li>Blocky brown</li> </ol>         | Grey       | (-1.06, -4.86)<br>1. (-1.05, -9.96)<br>2. (-4.38, -7.87)<br>(-2.11, -19.21)                                               |
| CEM-22   | Baculites<br>(2 samples)       | <ol> <li>Sparry yellow</li> <li>Blocky yellow</li> </ol>     | Grey       | 1. N/A<br>2. (-1.25, -5.11)<br>1. (-5.73, -11.45)<br>2. (-4.04, -10.09)<br>(-4.41, -19.91)                                |
| CEM-23   | Baculites                      | <ol> <li>Blocky mocc.</li> <li>Blocky seashell</li> </ol>    | Grey       | $\begin{array}{c} (-5.69, -9.05) \\ 1. (-11.98, -14.37) \\ 2. (-13.78, -16.34) \\ (-3.50, -19.60) \end{array}$            |
| CEM-24   | Baculites                      | Sparry yellow                                                | Dark Grey  | (-3.15, -11.34)<br>(-1.95, -12.73)<br>(-1.70, -19.84)                                                                     |
| CEM-25   | Baculites                      | Blocky yellow                                                | None       | N/A<br>(-1.82, -19.48)<br>None                                                                                            |
| CEM-26   | Baculites                      | Sparry grey-brown                                            | Grey       | (-3.73, -8.49)<br>(-1.82, -19.48)<br>(-6.21, -10.47)                                                                      |
| CEM-27   | Baculites                      | Sparry linen                                                 | Dark Grey  | (-2.24, -7.23)<br>(-1.10, -16.97)<br>(-1.35, -24.54)                                                                      |

APPENDIX A (CONTINUED) 154



| Trask Ranch, South Dakota, samples (continued) |           |                 |            |                                            |  |
|------------------------------------------------|-----------|-----------------|------------|--------------------------------------------|--|
| Sample                                         | Shell     | Cement          | Concretion | $(\delta^{18}O, \delta^{13}C),$<br>vs. PDB |  |
|                                                | Baculites |                 |            | (-3.07, -8.01)                             |  |
| CEM-28                                         |           | Blocky, yellow- |            | (-4.81, -21.00)                            |  |
|                                                |           | moccasin        | Dark grey  | (-1.29, -24.70)                            |  |
|                                                | Baculites |                 |            | (-1.47, -1.31)                             |  |
| CEM-29                                         |           | None            |            | None                                       |  |
|                                                |           |                 | Grey       | (-2.29, -18.58)                            |  |
|                                                | Baculites |                 |            | (-2.96, -5.45)                             |  |
| CEM-30                                         |           | 1. Sparry dark  |            | 1. (-1.72, -12.96)                         |  |
| CEM-50                                         |           | grey            |            | 2. (-8.55, -11.72)                         |  |
|                                                |           | 2. Agate brown  | Grey       | (-1.70, -18.64)                            |  |
|                                                | Baculites |                 |            | (-2.35, -2.51)                             |  |
| CEM-31                                         |           | Agate yellow    |            | (-10.20, -12.17)                           |  |
|                                                |           |                 | None       | None                                       |  |
|                                                | Baculites |                 |            | (-5.21, -5.52)                             |  |
| CEM-32                                         |           | Sparry seashell |            | (-10.02, -12.67)                           |  |
|                                                |           |                 | None       | None                                       |  |
|                                                | Baculites |                 |            | (-2.58, -2.09)                             |  |
| CEM-33                                         |           | None            |            | None                                       |  |
|                                                |           |                 | Dark Grey  | (-4.02, -19.86)                            |  |
|                                                | Baculites |                 |            | (-3.16, -4.51)                             |  |
| CEM-34                                         |           | None            |            | None                                       |  |
|                                                |           |                 | Dark Grey  | (-1.24, -25.75)                            |  |
|                                                | Baculites |                 |            | (-0.98, -1.97)                             |  |
| CEM-35                                         |           | None            |            | None                                       |  |
|                                                |           |                 | Dark Grey  | (-1.62, -14.28)                            |  |



#### APPENDIX B: SHELL ALTERATION ICP DATA

#### Mode of Preservation Suite

| Preserved Direct | ly in Shale |          |                       |
|------------------|-------------|----------|-----------------------|
| Specimen         | [Ca]        | [Al]     | Al/Ca                 |
| -                | ррт         | ррт      | (mMol/Mol)            |
| MP-1             | 349831.691  | N/A      | N/A                   |
| MP-2             | 175693.342  | N/A      | N/A                   |
| MP-3             | 373965.603  | N/A      | N/A                   |
| MP-4             | 341289.398  | N/A      | N/A                   |
| MP-5             | 322061.902  | N/A      | N/A                   |
| MP-6             | 334993.853  | N/A      | N/A                   |
| MP-7             | 370032.558  | N/A      | N/A                   |
| MP-8             | 391581.568  | N/A      | N/A                   |
| MP-9             | 321557.153  | N/A      | N/A                   |
|                  |             | Pres     | served in Concretions |
| <b>.</b> .       | [Ca]        | [Al]     | Al/Ca                 |
| Specimen         | ppm         | ppm      | (mMol/Mol)            |
| MP-10            | 342648.817  | N/A      | Ň/Á                   |
| MP-11            | 357578.327  | 1591.860 | 0.178                 |
| MP-12            | 396504.370  | 165.661  | 0.017                 |
| MP-13            | 313047.021  | N/A      | N/A                   |
| MP-14            | 384331.947  | N/A      | N/A                   |
| MP-15            | 357487.581  | N/A      | N/A                   |
| MP-16            | 290491.855  | 106.879  | 0.015                 |
| MP-17            | 329805.680  | N/A      | N/A                   |
| MP-18            | 387999.920  | N/A      | N/A                   |
| MP-19            | 348750.500  | 467.572  | 0.054                 |
| MP-20            | 286764.750  | 4507.980 | 0.629                 |

\*weight percents normalized to 40% Ca



#### Mode of Preservation Suite (Continued)

#### Preserved Directly in Shale K/Ca Fe/Ca [Fe] [K] Specimen (mMol/Mol) (mMol/Mol) ppm ppm MP-1 164.295 0.337 338.309 0.992 MP-2 N/A N/A 167.558 0.978 MP-3 245.962 286.090 0.549 0.675 MP-4 N/A N/A 139.411 0.419 MP-5 1916.905 4.270 179.928 0.573 MP-6 0.659 302.695 0.927 307.577 **MP-7** 340.507 0.660 276.961 0.768 MP-8 N/A N/A 185.102 0.485 MP-9 238.344 108.322 0.242 0.760

#### Preserved in Concretions

| Specimen | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|------------|--------------------|
| MP-10    | 3589.299    | 7.514               | 153.669    | 0.460              |
| MP-11    | 3426.162    | 6.873               | 183.978    | 0.528              |
| MP-12    | 4207.602    | 7.612               | 310.269    | 0.803              |
| MP-13    | 610.069     | 1.398               | 437.089    | 1.432              |
| MP-14    | 115.773     | 0.216               | 310.451    | 0.828              |
| MP-15    | 3721.623    | 7.468               | 186.998    | 0.536              |
| MP-16    | 12977.510   | 32.047              | 461.101    | 1.628              |
| MP-17    | 139.936     | 0.304               | 194.419    | 0.605              |
| MP-18    | N/A         | N/A                 | 194.544    | 0.514              |
| MP-19    | 5955.417    | 12.250              | 257.469    | 0.757              |
| MP-20    | 3092.760    | 7.737               | 591.085    | 2.114              |

\*weight percents normalized to 40% Ca



#### Mode of Preservation Suite (Continued)

#### Preserved Directly in Shale Mg/Ca Mn/Ca [Mg] [Mn] Specimen (mMol/Mol) (mMol/Mol) ppm ppm MP-1 106.439 0.502 199.801 0.417 MP-2 46.272 0.435 147.254 0.612 MP-3 404.205 0.789 161.308 0.712 MP-4 82.343 0.398 N/A N/A MP-5 95.359 0.489 285.207 0.647 MP-6 166.258 0.819 3239.452 7.063 MP-7 120.008 0.535 307.190 0.606 MP-8 804.598 3.391 N/A N/A MP-9 0.626 N/A 121.945 N/A

#### Preserved in Concretions

| Specimen | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| MP-10    | 2308.430    | 11.117              | 1762.292    | 3.757               |
| MP-11    | 1500.110    | 6.923               | 7216.334    | 14.741              |
| MP-12    | 1579.443    | 6.573               | 3931.915    | 7.243               |
| MP-13    | 192.618     | 1.015               | 2249.453    | 5.249               |
| MP-14    | 114.152     | 0.490               | 110.404     | 0.210               |
| MP-15    | 744.114     | 3.435               | 2575.970    | 5.263               |
| MP-16    | 1030.181    | 5.852               | 1184.273    | 2.978               |
| MP-17    | 95.991      | 0.480               | 85.498      | 0.189               |
| MP-18    | 264.723     | 1.126               | 26.294      | 0.049               |
| MP-19    | 2546.293    | 12.048              | 6814.483    | 14.272              |
| MP-20    | 3351.211    | 19.285              | 969.246     | 2.469               |



#### Mode of Preservation Suite (Continued)

## Preserved Directly in Shale

| Specimen | [Na]<br>ppm | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| MP-1     | 3902.407    | 19.449              | 2409.576    | 3.153               |
| MP-2     | 1801.963    | 17.882              | 1237.669    | 3.225               |
| MP-3     | 3410.736    | 15.901              | 3499.546    | 4.284               |
| MP-4     | 3940.044    | 20.128              | 1823.674    | 2.446               |
| MP-5     | 3636.226    | 19.685              | 2335.145    | 3.319               |
| MP-6     | 3528.756    | 18.365              | 2212.174    | 3.023               |
| MP-7     | 4009.190    | 18.890              | 2029.169    | 2.510               |
| MP-8     | 2814.216    | 12.530              | 1449.045    | 1.694               |
| MP-9     | 2142.852    | 11.619              | 1399.016    | 1.992               |

#### Preserved in Concretions

| Specimen | [Na]<br>ppm | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| MP-10    | 577.991     | 2.941               | 1093.216    | 1.460               |
| MP-11    | 344.619     | 1.680               | 651.877     | 0.835               |
| MP-12    | 3103.771    | 13.648              | 1838.879    | 2.123               |
| MP-13    | 3347.031    | 18.641              | 1833.716    | 2.681               |
| MP-14    | 4178.667    | 18.956              | 2574.603    | 3.067               |
| MP-15    | 3266.041    | 15.929              | 2584.284    | 3.309               |
| MP-16    | 3350.219    | 20.107              | 9318.315    | 14.684              |
| MP-17    | 3792.947    | 20.051              | 2397.838    | 3.328               |
| MP-18    | 4238.460    | 19.046              | 2111.923    | 2.492               |
| MP-19    | 1248.359    | 6.241               | 932.789     | 1.224               |
| MP-20    | 2728.575    | 16.589              | 1290.938    | 2.061               |



#### Shell Testing Location Suite (Continued)

#### Shell Taken from Septum:

| Specimen | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |
|----------|-------------|-------------|---------------------|
| 1S       | 397800.760  | N/A         | N/A                 |
| 2S       | 302918.706  | 586.552     | 0.077               |
| 3S       | 275462.981  | 2783.478    | 0.404               |
| 4S       | 339307.629  | 1144.141    | 0.135               |
| 5S       | 293972.437  | 1158.966    | 0.158               |
| 6S       | 323656.561  | 870.411     | 0.108               |
| 7S       | 353154.550  | N/A         | N/A                 |
| 8S       | 379448.012  | 99.169      | 0.010               |
| 9S       | 328225.280  | 224.715     | 0.027               |
| 10S      | 304005.309  | 597.682     | 0.079               |

## Shell Taken from Phragmacone Adjacent to Septum:

| Specimen  | [Ca]       | [Al]     | Al/Ca      |
|-----------|------------|----------|------------|
| specifici | ppm        | ppm      | (mMol/Mol) |
| 1P        | 323301.687 | 353.076  | 0.044      |
| 2P        | 394523.767 | 486.131  | 0.049      |
| 3P        | 13893.955  | 190.225  | 0.548      |
| 4P        | 307581.549 | 1735.389 | 0.226      |
| 5P        | 289798.190 | 891.545  | 0.123      |
| 6P        | 303252.508 | 645.480  | 0.085      |
| 7P        | 318913.955 | 537.746  | 0.067      |
| 8P        | 310820.113 | 736.899  | 0.095      |
| 9P        | 314319.917 | 231.145  | 0.029      |
| 10P       | 293918.604 | 1086.639 | 0.148      |



#### Shell Testing Location Suite (Continued)

#### Shell Taken from Septum:

| Specimen | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|------------|--------------------|
| 1S       | 337.061     | 0.608               | 241.893    | 0.624              |
| 2S       | 4216.932    | 9.986               | 745.807    | 2.525              |
| 3S       | 14485.545   | 37.723              | 756.209    | 2.815              |
| 4S       | 1402.202    | 2.964               | 650.465    | 1.966              |
| 5S       | 408.654     | 0.997               | 458.002    | 1.598              |
| 6S       | 1445.960    | 3.205               | 675.592    | 2.141              |
| 7S       | 596.196     | 1.211               | 272.637    | 0.792              |
| 8S       | 294.276     | 0.556               | 326.919    | 0.884              |
| 9S       | 702.057     | 1.534               | 547.704    | 1.711              |
| 10S      | 811.700     | 1.915               | 536.863    | 1.811              |

#### Shell Taken from Phragmacone Adjacent to Septum:

| Specimen | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|------------|--------------------|
| 1P       | 5953.316    | 13.209              | 689.200    | 2.186              |
| 2P       | 4679.821    | 8.509               | 566.304    | 1.472              |
| 3P       | 534.425     | 27.593              | 196.770    | 14.525             |
| 4P       | 3701.232    | 8.632               | 998.568    | 3.330              |
| 5P       | 1833.183    | 4.538               | 360.167    | 1.275              |
| 6P       | 1243.161    | 2.941               | 658.346    | 2.226              |
| 7P       | 3108.675    | 6.993               | 546.688    | 1.758              |
| 8P       | 3081.612    | 7.112               | 470.134    | 1.551              |
| 9P       | 913.828     | 2.086               | 376.295    | 1.228              |
| 10P      | 1756.955    | 4.288               | 701.014    | 2.446              |



#### Shell Testing Location Suite (Continued)

#### Shell Taken from Septum:

| ~- <i>r</i> |                                                                                                                        |                                                                                                                                                |                                                                                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol)                                                                                                    | [Mn]<br>ppm                                                                                                                                    | Mn/Ca<br>(mMol/Mol)                                                                                                                                                                                                    |
| 165.999     | 0.689                                                                                                                  | 164.926                                                                                                                                        | 0.303                                                                                                                                                                                                                  |
| 1573.935    | 8.574                                                                                                                  | 5820.233                                                                                                                                       | 14.034                                                                                                                                                                                                                 |
| 3102.620    | 18.587                                                                                                                 | 5411.270                                                                                                                                       | 14.349                                                                                                                                                                                                                 |
| 4785.934    | 23.276                                                                                                                 | 3524.525                                                                                                                                       | 7.587                                                                                                                                                                                                                  |
| 1428.219    | 8.017                                                                                                                  | 113.901                                                                                                                                        | 0.283                                                                                                                                                                                                                  |
| 1602.254    | 8.169                                                                                                                  | 410.622                                                                                                                                        | 0.927                                                                                                                                                                                                                  |
| 10471.826   | 48.932                                                                                                                 | 983.656                                                                                                                                        | 2.034                                                                                                                                                                                                                  |
| 465.993     | 2.027                                                                                                                  | 66.291                                                                                                                                         | 0.128                                                                                                                                                                                                                  |
| 2525.540    | 12.698                                                                                                                 | 844.126                                                                                                                                        | 1.878                                                                                                                                                                                                                  |
| 2497.084    | 13.555                                                                                                                 | 398.261                                                                                                                                        | 0.957                                                                                                                                                                                                                  |
|             | [Mg]<br>ppm<br>165.999<br>1573.935<br>3102.620<br>4785.934<br>1428.219<br>1602.254<br>10471.826<br>465.993<br>2525.540 | [Mg]Mg/Cappm(mMol/Mol)165.9990.6891573.9358.5743102.62018.5874785.93423.2761428.2198.0171602.2548.16910471.82648.932465.9932.0272525.54012.698 | [Mg]Mg/Ca[Mn]ppm(mMol/Mol)ppm165.9990.689164.9261573.9358.5745820.2333102.62018.5875411.2704785.93423.2763524.5251428.2198.017113.9011602.2548.169410.62210471.82648.932983.656465.9932.02766.2912525.54012.698844.126 |

#### Shell Taken from Phragmacone Adjacent to Septum:

| Specimen | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| 1P       | 1292.838    | 6.599               | 3199.795    | 7.229               |
| 2P       | 3127.006    | 13.080              | 6612.912    | 12.243              |
| 3P       | 216.894     | 25.761              | 174.509     | 9.174               |
| 4P       | 3838.157    | 20.592              | 3650.128    | 8.668               |
| 5P       | 2335.732    | 13.300              | 341.210     | 0.860               |
| 6P       | 5492.704    | 29.890              | 571.669     | 1.377               |
| 7P       | 8059.765    | 41.705              | 3192.408    | 7.312               |
| 8P       | 4881.985    | 25.919              | 1311.369    | 3.082               |
| 9P       | 3011.749    | 15.812              | 1636.809    | 3.804               |
| 10P      | 2041.629    | 11.463              | 492.919     | 1.225               |



#### Shell Testing Location Suite (Continued)

#### Shell Taken from Septum:

| Specimen | [Na]<br>ppm | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| 1S       | 3690.897    | 16.176              | 2975.639    | 3.424               |
| 2S       | 628.338     | 3.616               | 523.399     | 0.791               |
| 3S       | 670.099     | 4.241               | 512.388     | 0.851               |
| 4S       | 3067.143    | 15.760              | 3425.384    | 4.621               |
| 5S       | 3264.908    | 19.363              | 1964.570    | 3.059               |
| 6S       | 5959.577    | 32.103              | 2099.138    | 2.969               |
| 7S       | 2431.042    | 12.002              | 1535.904    | 1.991               |
| 8S       | 4064.048    | 18.673              | 2228.468    | 2.688               |
| 9S       | 6641.447    | 35.278              | 2721.898    | 3.796               |
| 10S      | 7111.696    | 40.786              | 1783.532    | 2.686               |

#### Shell Taken from Phragmacone Adjacent to Septum:

| Specimen | [Na]<br>ppm | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |
|----------|-------------|---------------------|-------------|---------------------|
| 1P       | 3019.709    | 16.284              | 11566.121   | 16.376              |
| 2P       | 920.300     | 4.067               | 931.567     | 1.081               |
| 3P       | 284.505     | 35.701              | 604.503     | 19.917              |
| 4P       | 3295.050    | 18.677              | 1940.755    | 2.888               |
| 5P       | 3517.415    | 21.161              | 1997.610    | 3.155               |
| 6P       | 5232.188    | 30.081              | 2606.202    | 3.934               |
| 7P       | 7940.190    | 43.408              | 1531.817    | 2.199               |
| 8P       | 2746.384    | 15.405              | 2707.685    | 3.988               |
| 9P       | 2187.071    | 12.131              | 2827.012    | 4.117               |
| 10P      | 5139.491    | 30.487              | 2212.709    | 3.446               |



## Shell Color Suite (Continued)

| Kremmling, Colorado, samples |             |             |                     |  |
|------------------------------|-------------|-------------|---------------------|--|
| Sample                       | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |  |
| SC-1                         | 349374.665  | N/A         | N/A                 |  |
| SC-2                         | 210798.358  | 428.866     | 0.081               |  |
| SC-3                         | 307749.064  | N/A         | N/A                 |  |
| SC-4                         | 324906.964  | N/A         | N/A                 |  |
| SC-5                         | 388851.043  | N/A         | N/A                 |  |
| SC-6                         | 336077.139  | 231.945     | 0.028               |  |
| SC-7                         | 233388.744  | 2414.911    | 0.414               |  |
| SC-8                         | 256015.593  | 284.786     | 0.044               |  |
| SC-9                         | 296636.139  | 1137.917    | 0.153               |  |
| SC-10                        | 346784.033  | N/A         | N/A                 |  |
| SC-11                        | 255766.478  | 1426.706    | 0.223               |  |
| SC-12                        | 391821.330  | N/A         | N/A                 |  |
| SC-13                        | 309157.385  | N/A         | N/A                 |  |
| SC-14                        | 196443.855  | 2467.386    | 0.502               |  |
| SC-15                        | 327370.577  | 314.596     | 0.038               |  |
| SC-16                        | 179071.433  | 1857.479    | 0.415               |  |
| SC-17                        | 120771.796  | 2009.081    | 0.665               |  |
| SC-18                        | 272407.339  | 1657.166    | 0.243               |  |
| SC-19                        | 245129.445  | 2012.211    | 0.328               |  |
| SC-20                        | 338296.486  | N/A         | N/A                 |  |



## Shell Color Suite (Continued)

| Game Ranch, South Dakota, samples |             |             |                     |  |
|-----------------------------------|-------------|-------------|---------------------|--|
| Sample                            | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |  |
| SC-21                             | 295002.574  | 779.089     | 0.106               |  |
| SC-22                             | 380815.313  | N/A         | N/A                 |  |
| SC-23                             | 377794.156  | N/A         | N/A                 |  |
| SC-24                             | 285378.708  | 493.717     | 0.069               |  |
| SC-25                             | 375552.472  | N/A         | N/A                 |  |
| SC-26                             | 350602.189  | 88.597      | 0.010               |  |
| SC-27                             | 286893.057  | N/A         | N/A                 |  |
| SC-28                             | 348429.480  | N/A         | N/A                 |  |
| SC-29                             | 307341.279  | 1147.963    | 0.149               |  |
| SC-30                             | 368493.489  | N/A         | N/A                 |  |
| SC-31                             | 346095.016  | N/A         | N/A                 |  |
| SC-32                             | 379592.814  | N/A         | N/A                 |  |
| SC-33                             | 346144.010  | N/A         | N/A                 |  |
| SC-34                             | 303721.408  | 234.436     | 0.031               |  |
| SC-35                             | 350303.529  | N/A         | N/A                 |  |
| SC-36                             | 351040.497  | N/A         | N/A                 |  |
| SC-37                             | 354576.098  | 229.018     | 0.026               |  |
| SC-38                             | 338869.682  | 176.870     | 0.021               |  |
| SC-39                             | 370022.686  | N/A         | N/A                 |  |
| SC-40                             | 333044.179  | 268.238     | 0.032               |  |



## Shell Color Suite (Continued)

| Trask Ranch, South Dakota, samples |             |             |                     |  |
|------------------------------------|-------------|-------------|---------------------|--|
| Sample                             | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |  |
| SC-41                              | 383656.252  | N/A         | N/A                 |  |
| SC-42                              | 314802.951  | 120.130     | 0.015               |  |
| SC-43                              | 336563.754  | 272.687     | 0.032               |  |
| SC-44                              | 327926.765  | 431.806     | 0.053               |  |
| SC-45                              | 344621.864  | 183.885     | 0.021               |  |
| SC-46                              | 367743.402  | N/A         | N/A                 |  |
| SC-47                              | 368017.078  | N/A         | N/A                 |  |
| SC-48                              | 382577.145  | N/A         | N/A                 |  |
| SC-49                              | 349892.589  | N/A         | N/A                 |  |
| SC-50                              | 384139.477  | N/A         | N/A                 |  |
| SC-51                              | 346954.297  | 247.461     | 0.029               |  |
| SC-52                              | 374739.380  | N/A         | N/A                 |  |
| SC-53                              | 292900.718  | 921.493     | 0.126               |  |
| SC-54                              | 354750.549  | 440.163     | 0.050               |  |
| SC-55                              | 369232.955  | N/A         | N/A                 |  |
| SC-56                              | 322742.995  | 928.338     | 0.115               |  |
| SC-57                              | 306012.390  | 1902.768    | 0.249               |  |
| SC-58                              | 363062.012  | 1239.145    | 0.137               |  |
| SC-59                              | 592092.486  | 1893.634    | 0.128               |  |
| SC-60                              | 310263.392  | 1487.702    | 0.192               |  |



## Shell Color Suite (Continued)

| Kremmling, Colorado, samples |             |                     |            |                    |  |
|------------------------------|-------------|---------------------|------------|--------------------|--|
| Sample                       | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |  |
| SC-1                         | 6736.994    | 13.833              | 119.007    | 0.349              |  |
| SC-2                         | 3903.263    | 13.283              | 446.898    | 2.174              |  |
| SC-3                         | 2759.682    | 6.433               | 176.120    | 0.587              |  |
| SC-4                         | 9989.496    | 22.056              | 181.576    | 0.573              |  |
| SC-5                         | 4047.950    | 7.468               | 163.946    | 0.432              |  |
| SC-6                         | 4666.698    | 9.961               | 352.146    | 1.075              |  |
| SC-7                         | 5025.051    | 15.445              | 1215.893   | 5.343              |  |
| SC-8                         | 4336.310    | 12.150              | 264.814    | 1.061              |  |
| SC-9                         | 7274.074    | 17.591              | 807.516    | 2.792              |  |
| SC-10                        | 11367.810   | 23.515              | 174.042    | 0.515              |  |
| SC-11                        | 4837.432    | 13.568              | 838.281    | 3.361              |  |
| SC-12                        | 4392.651    | 8.042               | 226.923    | 0.594              |  |
| SC-13                        | 4055.587    | 9.410               | 216.167    | 0.717              |  |
| SC-14                        | 5199.664    | 18.988              | 1221.966   | 6.380              |  |
| SC-15                        | 5293.590    | 11.600              | 398.537    | 1.249              |  |
| SC-16                        | 3264.076    | 13.076              | 983.965    | 5.635              |  |
| SC-17                        | 3826.494    | 22.728              | 1014.966   | 8.619              |  |
| SC-18                        | 5829.126    | 15.350              | 957.701    | 3.606              |  |
| SC-19                        | 1465.171    | 4.288               | 502.938    | 2.104              |  |
| SC-20                        | 182.013     | 0.386               | 180.520    | 0.547              |  |



## Shell Color Suite (Continued)

| Game Ranch, South Dakota, samples |             |                     |            |                    |
|-----------------------------------|-------------|---------------------|------------|--------------------|
| Sample                            | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
| SC-21                             | 11119.928   | 27.040              | 1085.274   | 3.773              |
| SC-22                             | 377.728     | 0.712               | 288.124    | 0.776              |
| SC-23                             | 67.176      | 0.128               | 281.042    | 0.763              |
| SC-24                             | 11255.772   | 28.293              | 774.921    | 2.785              |
| SC-25                             | 1138.393    | 2.174               | 301.653    | 0.824              |
| SC-26                             | 951.777     | 1.947               | 549.251    | 1.607              |
| SC-27                             | 54990.386   | 137.499             | 358.482    | 1.281              |
| SC-28                             | 429.027     | 0.883               | 430.792    | 1.268              |
| SC-29                             | 13124.393   | 30.633              | 1283.895   | 4.284              |
| SC-30                             | 136.915     | 0.267               | 295.726    | 0.823              |
| SC-31                             | 399.480     | 0.828               | 323.004    | 0.957              |
| SC-32                             | 348.335     | 0.658               | 480.928    | 1.299              |
| SC-33                             | 396.158     | 0.821               | 545.087    | 1.615              |
| SC-34                             | 8802.022    | 20.789              | 569.099    | 1.922              |
| SC-35                             | 269.467     | 0.552               | 387.858    | 1.136              |
| SC-36                             | 61.635      | 0.126               | 330.524    | 0.966              |
| SC-37                             | 2319.393    | 4.692               | 532.004    | 1.539              |
| SC-38                             | 1191.225    | 2.522               | 420.055    | 1.271              |
| SC-39                             | 994.297     | 1.928               | 413.204    | 1.145              |
| SC-40                             | 473.524     | 1.020               | 525.450    | 1.618              |



## Shell Color Suite (Continued)

| Trask Ranch, South Dakota, samples |             |                     |            |                    |  |
|------------------------------------|-------------|---------------------|------------|--------------------|--|
| Sample                             | [Fe]<br>ppm | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |  |
| SC-41                              | 878.332     | 1.642               | 343.065    | 0.917              |  |
| SC-42                              | 560.224     | 1.277               | 510.236    | 1.662              |  |
| SC-43                              | 1040.026    | 2.217               | 348.456    | 1.062              |  |
| SC-44                              | 3153.780    | 6.899               | 519.968    | 1.626              |  |
| SC-45                              | 907.823     | 1.890               | 416.701    | 1.240              |  |
| SC-46                              | 375.105     | 0.732               | 352.882    | 0.984              |  |
| SC-47                              | 350.843     | 0.684               | 383.760    | 1.069              |  |
| SC-48                              | 250.910     | 0.470               | 293.720    | 0.787              |  |
| SC-49                              | 484.413     | 0.993               | 484.836    | 1.421              |  |
| SC-50                              | 154.620     | 0.289               | 350.884    | 0.937              |  |
| SC-51                              | 621.354     | 1.285               | 559.584    | 1.654              |  |
| SC-52                              | 267.156     | 0.511               | 395.679    | 1.083              |  |
| SC-53                              | 1651.748    | 4.045               | 1057.093   | 3.701              |  |
| SC-54                              | 5099.743    | 10.312              | 624.870    | 1.806              |  |
| SC-55                              | 144.526     | 0.281               | 333.893    | 0.927              |  |
| SC-56                              | 6788.838    | 15.089              | 833.530    | 2.649              |  |
| SC-57                              | 2378.588    | 5.576               | 902.531    | 3.025              |  |
| SC-58                              | 1655.949    | 3.272               | 1000.435   | 2.826              |  |
| SC-59                              | 10936.007   | 13.250              | 1526.556   | 2.644              |  |
| SC-60                              | 5306.503    | 12.269              | 820.833    | 2.713              |  |



## Shell Color Suite (Continued)

| Kremmling, Colorado, samples |             |                     |             |                     |  |
|------------------------------|-------------|---------------------|-------------|---------------------|--|
| Sample                       | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |  |
| SC-1                         | 1972.721    | 9.318               | 2945.413    | 6.158               |  |
| SC-2                         | 2026.530    | 15.864              | 3988.699    | 13.821              |  |
| SC-3                         | 1270.365    | 6.812               | 6230.504    | 14.788              |  |
| SC-4                         | 2581.117    | 13.110              | 4049.314    | 9.103               |  |
| SC-5                         | 1672.626    | 7.098               | 5448.521    | 10.235              |  |
| SC-6                         | 1582.790    | 7.772               | 7306.718    | 15.880              |  |
| SC-7                         | 2956.605    | 20.905              | 2494.407    | 7.807               |  |
| SC-8                         | 2453.366    | 15.814              | 4032.559    | 11.505              |  |
| SC-9                         | 2325.221    | 12.935              | 4855.124    | 11.955              |  |
| SC-10                        | 2141.687    | 10.191              | 4314.775    | 9.088               |  |
| SC-11                        | 1993.891    | 12.865              | 5579.722    | 15.935              |  |
| SC-12                        | 1911.589    | 8.051               | 8319.078    | 15.508              |  |
| SC-13                        | 1383.786    | 7.386               | 6944.814    | 16.408              |  |
| SC-14                        | 2935.301    | 24.658              | 3169.419    | 11.785              |  |
| SC-15                        | 1797.564    | 9.061               | 6779.449    | 15.126              |  |
| SC-16                        | 4074.614    | 37.549              | 1342.895    | 5.478               |  |
| SC-17                        | 2616.606    | 35.753              | 2074.170    | 12.544              |  |
| SC-18                        | 2865.714    | 17.360              | 5512.545    | 14.781              |  |
| SC-19                        | 2396.181    | 16.131              | 1418.026    | 4.225               |  |
| SC-20                        | 2667.130    | 13.010              | 526.068     | 1.136               |  |



| Game Ranch, South Dakota, samples |             |                     |             |                     |
|-----------------------------------|-------------|---------------------|-------------|---------------------|
| Sample                            | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
| SC-21                             | 1326.876    | 7.422               | 2942.568    | 7.286               |
| SC-22                             | 126.981     | 0.550               | 180.025     | 0.345               |
| SC-23                             | 161.861     | 0.707               | 78.945      | 0.153               |
| SC-24                             | 5449.457    | 31.512              | 3517.102    | 9.002               |
| SC-25                             | 183.582     | 0.807               | 2635.794    | 5.126               |
| SC-26                             | 994.923     | 4.683               | 1260.325    | 2.626               |
| SC-27                             | 2497.682    | 14.367              | 5775.334    | 14.704              |
| SC-28                             | 298.577     | 1.414               | 347.127     | 0.728               |
| SC-29                             | 1190.107    | 6.390               | 1739.087    | 4.133               |
| SC-30                             | 84.588      | 0.379               | 302.604     | 0.600               |
| SC-31                             | 98.034      | 0.467               | 152.352     | 0.322               |
| SC-32                             | 309.860     | 1.347               | 4919.315    | 9.466               |
| SC-33                             | 270.770     | 1.291               | 3134.235    | 6.614               |
| SC-34                             | 11160.331   | 60.637              | 942.549     | 2.267               |
| SC-35                             | 276.651     | 1.303               | 45.970      | 0.096               |
| SC-36                             | 452.250     | 2.126               | 73.290      | 0.152               |
| SC-37                             | 1860.869    | 8.661               | 1747.161    | 3.599               |
| SC-38                             | 1306.539    | 6.362               | 783.941     | 1.690               |
| SC-39                             | 648.516     | 2.892               | 329.873     | 0.651               |
| SC-40                             | 216.444     | 1.072               | N/A         | N/A                 |



| Trask Ra | Trask Ranch, South Dakota, samples |                     |             |                     |  |
|----------|------------------------------------|---------------------|-------------|---------------------|--|
| Sample   | [Mg]<br>ppm                        | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |  |
| SC-41    | 575.944                            | 2.477               | 2145.707    | 4.085               |  |
| SC-42    | 2240.993                           | 11.747              | 475.724     | 1.104               |  |
| SC-43    | 2782.707                           | 13.644              | 972.733     | 2.111               |  |
| SC-44    | 6031.295                           | 30.351              | 2779.305    | 6.191               |  |
| SC-45    | 1216.740                           | 5.826               | 974.129     | 2.065               |  |
| SC-46    | 1021.474                           | 4.584               | 460.717     | 0.915               |  |
| SC-47    | 1458.854                           | 6.542               | 582.723     | 1.157               |  |
| SC-48    | 348.164                            | 1.502               | 232.611     | 0.444               |  |
| SC-49    | 904.993                            | 4.268               | 455.948     | 0.952               |  |
| SC-50    | 394.804                            | 1.696               | 130.099     | 0.247               |  |
| SC-51    | 321.873                            | 1.531               | N/A         | N/A                 |  |
| SC-52    | 804.157                            | 3.541               | 244.546     | 0.477               |  |
| SC-53    | 3537.012                           | 19.928              | 759.422     | 1.894               |  |
| SC-54    | 12247.372                          | 56.972              | 3563.514    | 7.337               |  |
| SC-55    | 628.403                            | 2.809               | 246.420     | 0.487               |  |
| SC-56    | 5729.899                           | 29.297              | 5775.688    | 13.071              |  |
| SC-57    | 6623.041                           | 35.715              | 1543.848    | 3.685               |  |
| SC-58    | 2741.765                           | 12.462              | 1749.631    | 3.520               |  |
| SC-59    | 13388.800                          | 37.316              | 7764.048    | 9.578               |  |
| SC-60    | 2694.561                           | 14.332              | 4623.775    | 10.885              |  |



| Kremmlin | Kremmling, Colorado, samples |                     |             |                     |  |
|----------|------------------------------|---------------------|-------------|---------------------|--|
| Sample   | [Na]<br>ppm                  | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |  |
| SC-1     | 706.544                      | 3.526               | 1493.954    | 1.957               |  |
| SC-2     | 3390.397                     | 28.041              | 384.189     | 0.834               |  |
| SC-3     | 306.451                      | 1.736               | 544.015     | 0.809               |  |
| SC-4     | 374.077                      | 2.007               | 754.795     | 1.063               |  |
| SC-5     | 1734.972                     | 7.779               | 1422.817    | 1.675               |  |
| SC-6     | 345.030                      | 1.790               | 576.458     | 0.785               |  |
| SC-7     | 4594.785                     | 34.324              | 369.622     | 0.725               |  |
| SC-8     | 369.586                      | 2.517               | 467.831     | 0.836               |  |
| SC-9     | 420.889                      | 2.474               | 657.507     | 1.015               |  |
| SC-10    | 254.623                      | 1.280               | 656.443     | 0.867               |  |
| SC-11    | 1212.344                     | 8.264               | 456.583     | 0.817               |  |
| SC-12    | 448.175                      | 1.994               | 819.504     | 0.957               |  |
| SC-13    | 285.333                      | 1.609               | 511.231     | 0.757               |  |
| SC-14    | 2246.541                     | 19.938              | 384.357     | 0.896               |  |
| SC-15    | 358.141                      | 1.907               | 600.895     | 0.840               |  |
| SC-16    | 3531.446                     | 34.383              | 529.702     | 1.354               |  |
| SC-17    | 809.730                      | 11.689              | 221.732     | 0.840               |  |
| SC-18    | 803.904                      | 5.145               | 554.923     | 0.933               |  |
| SC-19    | 1735.618                     | 12.345              | 982.662     | 1.835               |  |
| SC-20    | 2457.735                     | 12.666              | 1240.698    | 1.679               |  |



| Game Ra | Game Ranch, South Dakota, samples |                     |             |                     |  |
|---------|-----------------------------------|---------------------|-------------|---------------------|--|
| Sample  | [Na]<br>ppm                       | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |  |
| SC-21   | 3084.444                          | 18.229              | 2567.832    | 3.985               |  |
| SC-22   | 3718.036                          | 17.022              | 3027.965    | 3.640               |  |
| SC-23   | 3937.584                          | 18.172              | 3002.582    | 3.638               |  |
| SC-24   | 2470.400                          | 15.093              | 2518.660    | 4.040               |  |
| SC-25   | 3165.385                          | 14.695              | 3544.326    | 4.320               |  |
| SC-26   | 3828.344                          | 19.038              | 2000.966    | 2.613               |  |
| SC-27   | 3498.948                          | 21.263              | 2083.027    | 3.324               |  |
| SC-28   | 4338.181                          | 21.707              | 1937.749    | 2.546               |  |
| SC-29   | 3608.656                          | 20.471              | 2389.502    | 3.559               |  |
| SC-30   | 4533.102                          | 21.448              | 2597.124    | 3.226               |  |
| SC-31   | 4128.452                          | 20.797              | 1863.390    | 2.465               |  |
| SC-32   | 3924.948                          | 18.027              | 2324.538    | 2.803               |  |
| SC-33   | 3546.025                          | 17.861              | 3980.821    | 5.264               |  |
| SC-34   | 3646.641                          | 20.933              | 2623.239    | 3.954               |  |
| SC-35   | 4065.437                          | 20.234              | 1799.189    | 2.351               |  |
| SC-36   | 4150.104                          | 20.612              | 3250.576    | 4.239               |  |
| SC-37   | 2970.007                          | 14.604              | 1424.169    | 1.839               |  |
| SC-38   | 3362.519                          | 17.300              | 1336.423    | 1.805               |  |
| SC-39   | 2839.399                          | 13.379              | 1493.068    | 1.847               |  |
| SC-40   | 2508.917                          | 13.134              | 1473.977    | 2.026               |  |



| Trask Ra | Trask Ranch, South Dakota, samples |                     |             |                     |  |
|----------|------------------------------------|---------------------|-------------|---------------------|--|
| Sample   | [Na]<br>ppm                        | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |  |
| SC-41    | 3504.255                           | 15.925              | 3265.464    | 3.896               |  |
| SC-42    | 4861.709                           | 26.926              | 4260.665    | 6.196               |  |
| SC-43    | 8975.105                           | 46.493              | 2648.529    | 3.602               |  |
| SC-44    | 1760.631                           | 9.361               | 2212.598    | 3.089               |  |
| SC-45    | 4285.288                           | 21.680              | 2388.933    | 3.173               |  |
| SC-46    | 3941.349                           | 18.686              | 1908.415    | 2.376               |  |
| SC-47    | 5417.316                           | 25.664              | 2154.871    | 2.680               |  |
| SC-48    | 4112.303                           | 18.741              | 2179.679    | 2.608               |  |
| SC-49    | 3601.184                           | 17.944              | 2286.626    | 2.992               |  |
| SC-50    | 3804.437                           | 17.267              | 2615.512    | 3.117               |  |
| SC-51    | 3864.684                           | 19.420              | 2577.314    | 3.400               |  |
| SC-52    | 3568.098                           | 16.601              | 3130.853    | 3.824               |  |
| SC-53    | 4957.611                           | 29.510              | 1734.128    | 2.710               |  |
| SC-54    | 2300.133                           | 11.304              | 592.935     | 0.765               |  |
| SC-55    | 3944.085                           | 18.624              | 2813.711    | 3.488               |  |
| SC-56    | 2382.854                           | 12.872              | 1656.773    | 2.350               |  |
| SC-57    | 8502.651                           | 48.443              | 1671.584    | 2.501               |  |
| SC-58    | 2169.675                           | 10.419              | 7309.292    | 9.216               |  |
| SC-59    | 9058.639                           | 26.674              | 3659.690    | 2.829               |  |
| SC-60    | 2842.429                           | 15.973              | 1575.591    | 2.325               |  |



### Cementation Suite

| Kremmling, Colora | udo, samples |             |                     |
|-------------------|--------------|-------------|---------------------|
| Sample            | [Ca]<br>ppm  | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |
| CEM-1S            | 255432.82    | 771.18      | 4.484               |
| CEM-1Ce           | 303879.50    | N/A         | N/A                 |
| CEM-1Co           | 220810.48    | 1711.05     | 11.509              |
| CEM-2S            | 358874.98    | 276.10      | 1.143               |
| CEM-2Co           | 251093.16    | 1847.62     | 10.928              |
| CEM-3S            | 265065.62    | 727.46      | 4.076               |
| CEM-3Ce           | 475948.97    | N/A         | N/A                 |
| CEM-3Co           | 179162.98    | 1766.72     | 14.645              |
| CEM-4S            | 625305.54    | 2580.28     | 6.129               |
| CEM-4Co           | 211100.68    | 4971.60     | 34.977              |
| CEM-5S            | 350061.94    | N/A         | N/A                 |
| CEM-5Ce           | 278865.48    | N/A         | N/A                 |
| CEM-5Co           | 222344.01    | 1680.37     | 11.224              |
| CEM-6S            | 52036.78     | 296.93      | 8.475               |
| CEM-6Ce           | 339589.59    | N/A         | N/A                 |
| CEM-6Co           | 190857.76    | 2513.65     | 19.560              |
| CEM-7S            | 339329.61    | 534.68      | 2.340               |
| CEM-7Ce           | 372392.56    | N/A         | N/A                 |
| CEM-7Co           | 324670.05    | 1038.23     | 4.749               |
| CEM-8S            | 335406.50    | N/A         | N/A                 |
| CEM-8Ce           | 341787.32    | N/A         | N/A                 |
| CEM-8Co           | 227985.95    | 2069.69     | 13.483              |
| CEM-9S            | 378031.27    | 289.17      | 1.136               |
| CEM-9Ce1          | 356061.91    | N/A         | N/A                 |
| CEM-9Ce2          | 266343.28    | 631.94      | 3.524               |
| CEM-9Co           | 362867.17    | 122.50      | 0.501               |
| CEM-10S           | 361903.30    | N/A         | N/A                 |
| CEM-10Ce1         | 388303.55    | N/A         | N/A                 |
| CEM-10Ce2         | 379821.80    | N/A         | N/A                 |
| CEM-10Co          | 299197.88    | 2180.76     | 10.825              |



| Game Ranch, South Dakota, samples |             |             |                     |  |  |
|-----------------------------------|-------------|-------------|---------------------|--|--|
| Sample                            | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |  |  |
| CEM-11S                           | 261172.41   | 1819.58     | 10.347              |  |  |
| CEM-11Co                          | 90588.34    | 3288.19     | 53.909              |  |  |
| CEM-11Cr1                         | 237395.84   | 394.69      | 2.469               |  |  |
| CEM-11Cr2                         | 226000.39   | 100.90      | 0.663               |  |  |
| CEM-12S                           | 388705.07   | N/A         | N/A                 |  |  |
| CEM-12Co                          | 245278.19   | 1463.17     | 8.860               |  |  |
| CEM-12Cr1                         | 225573.17   | 615.60      | 4.053               |  |  |
| CEM-12Cr2                         | 169693.24   | 111.13      | 0.973               |  |  |
| CEM-13S                           | 380419.54   | 106.25      | 0.415               |  |  |
| CEM-13Co                          | 237231.41   | 2053.75     | 12.858              |  |  |
| CEM-13Cr                          | 236948.73   | 286.25      | 1.794               |  |  |
| CEM-14S                           | 290700.00   | 840.43      | 4.294               |  |  |
| CEM-14Ce1                         | 103306.32   | 221.48      | 3.184               |  |  |
| CEM-14Ce2                         | 17070.41    | 135.15      | 11.759              |  |  |
| CEM-14Cr1                         | 25103.31    | 876.95      | 51.883              |  |  |
| CEM-14Cr2                         | 40110.25    | 1261.28     | 46.702              |  |  |
| CEM-15S                           | 391032.82   | N/A         | N/A                 |  |  |
| CEM-15Co1                         | 268303.24   | 2156.22     | 11.936              |  |  |
| CEM-15Co2                         | 92163.79    | 3094.03     | 49.859              |  |  |



| Sample    | [Ca]      | [Al]       | Al/Ca      |
|-----------|-----------|------------|------------|
| -         | 272210.20 | <b>ppm</b> | (mMol/Mol) |
| CEM-16S   | 372319.20 | 308.46     | 1.230      |
| CEM-16Ce1 | 348010.29 | N/A        | N/A        |
| CEM-16Ce2 | 367833.26 | 259.47     | 1.048      |
| CEM-16Co  | 300039.42 | 2645.31    | 13.094     |
| CEM-17S1  | 284559.41 | 586.30     | 3.060      |
| CEM-17S2  | 349902.11 | 359.28     | 1.525      |
| CEM-17Ce1 | 317855.38 | 568.15     | 2.655      |
| CEM-17Ce2 | 381884.20 | 102.89     | 0.400      |
| CEM-17Co  | 298747.21 | 2399.52    | 11.929     |
| CEM-18S   | 393776.54 | N/A        | N/A        |
| CEM-18Ce  | 399144.37 | 259.38     | 0.965      |
| CEM-18Co  | 260098.66 | 6439.27    | 36.769     |
| CEM-19S1  | 317955.32 | 226.61     | 1.058      |
| CEM-19S2  | 351780.35 | 371.10     | 1.567      |
| CEM-19Ce1 | 521438.36 | 456.92     | 1.301      |
| CEM-19Ce2 | 323274.26 | 101.27     | 0.465      |
| CEM-19Co  | 302066.99 | 2586.47    | 12.717     |
| CEM-20S   | 382850.85 | 654.04     | 2.537      |
| CEM-20Co  | 263178.45 | 6559.99    | 37.020     |
| CEM-21S   | 293049.19 | 1095.25    | 5.551      |
| CEM-21Ce1 | 317672.23 | N/A        | N/A        |
| CEM-21Co  | 274184.03 | 2495.04    | 13.515     |
| CEM-22S1  | 281796.30 | 1014.27    | 5.346      |
| CEM-22S2  | 336458.65 | 1515.34    | 6.689      |
| CEM-22Ce1 | 280626.69 | 1540.34    | 8.152      |
| CEM-22Ce2 | 370888.45 | N/A        | N/A        |
| CEM-22Co  | 264976.38 | 3974.43    | 22.277     |
| CEM-23S   | 277337.00 | 2329.73    | 12.476     |
| CEM-23Ce1 | 394020.73 | 279.22     | 1.052      |
| CEM-23Ce2 | 379758.14 | N/A        | N/A        |
| CEM-23Co  | 292270.67 | 2905.92    | 14.767     |



| Sample    | [Ca]<br>ppm | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) |
|-----------|-------------|-------------|---------------------|
| CEM-24S   | 272964.37   | 426.63      | 2.321               |
| CEM-24Ce  | 374382.05   | 186.00      | 0.738               |
| CEM-24Co  | 267054.50   | 3016.73     | 16.777              |
| CEM-25S   | 404485.34   | N/A         | N/A                 |
| CEM-25Ce  | 370380.16   | 3651.09     | 14.640              |
| CEM-25Co  | 288819.66   | 3618.82     | 18.609              |
| CEM-26S   | 370368.96   | 823.22      | 3.301               |
| CEM-26Ce  | 294838.84   | 3018.75     | 15.206              |
| CEM-26Co  | 370133.19   | 436.05      | 1.750               |
| CEM-27S   | 313509.45   | 1406.78     | 6.664               |
| CEM-27Ce  | 360938.20   | N/A         | N/A                 |
| CEM-27Co  | 293772.24   | 2021.58     | 10.220              |
| CEM-28S   | 367916.87   | 330.63      | 1.335               |
| CEM-28Ce  | 227586.99   | 141.91      | 0.926               |
| CEM-28Co  | 227852.24   | 1858.50     | 12.114              |
| CEM-29S   | 333660.53   | 970.36      | 4.319               |
| CEM-29Co  | 289763.65   | 2262.83     | 11.598              |
| CEM-29Cr  | 338142.89   | 591.50      | 2.598               |
| CEM-30S   | 342594.96   | 1264.37     | 5.481               |
| CEM-30Ce1 | 274004.45   | N/A         | N/A                 |
| CEM-30Ce2 | 279716.77   | 1045.67     | 5.552               |
| CEM-30Co  | 278435.07   | 3013.68     | 16.075              |
| CEM-31S   | 349977.93   | N/A         | N/A                 |
| CEM-31Ce  | 350808.53   | N/A         | N/A                 |
| CEM-32S   | 368450.73   | N/A         | N/A                 |
| CEM-32Ce  | 335529.56   | N/A         | N/A                 |
| CEM-33S   | 333255.24   | 1848.23     | 8.237               |
| CEM-33Co  | 252382.59   | 2369.31     | 13.943              |
| CEM-34S   | 241088.47   | N/A         | N/A                 |
| CEM-34Co  | 297050.08   | 2770.89     | 13.854              |



| Kremmling, Co | lorado, samples |                     |            |                    |
|---------------|-----------------|---------------------|------------|--------------------|
| Sample        | [Fe]<br>ppm     | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
| CEM-1S        | 4952.44         | 13.908              | 582.62     | 0.091              |
| CEM-1Ce       | 3752.21         | 8.858               | 222.65     | 0.029              |
| CEM-1Co       | 4490.18         | 14.587              | 1192.48    | 0.216              |
| CEM-2S        | 13500.74        | 26.987              | 270.92     | 0.030              |
| CEM-2Co       | 10301.29        | 29.430              | 1270.91    | 0.202              |
| CEM-3S        | 2344.41         | 6.345               | 372.91     | 0.056              |
| CEM-3Ce       | 9026.85         | 13.605              | 224.80     | 0.019              |
| CEM-3Co       | 5168.33         | 20.694              | 1211.73    | 0.271              |
| CEM-4S        | 6919.87         | 7.938               | 315.07     | 0.020              |
| CEM-4Co       | 35258.23        | 119.813             | 1974.82    | 0.374              |
| CEM-5S        | 6224.77         | 12.756              | 256.35     | 0.029              |
| CEM-5Ce       | 5358.11         | 13.783              | 184.99     | 0.027              |
| CEM-5Co       | 5655.22         | 18.246              | 1160.82    | 0.209              |
| CEM-6S        | 1608.08         | 22.168              | 283.20     | 0.218              |
| CEM-6Ce       | 11414.49        | 24.112              | 292.68     | 0.034              |
| CEM-6Co       | 9809.57         | 36.870              | 1131.19    | 0.237              |
| CEM-7S        | 3839.88         | 8.118               | 539.74     | 0.064              |
| CEM-7Ce       | 4255.77         | 8.198               | 260.99     | 0.028              |
| CEM-7Co       | 7070.92         | 15.623              | 749.87     | 0.092              |
| CEM-8S        | 4197.52         | 8.977               | 273.64     | 0.033              |
| CEM-8Ce       | 4372.52         | 9.177               | 188.24     | 0.022              |
| CEM-8Co       | 4748.04         | 14.940              | 1315.89    | 0.231              |
| CEM-9S        | 3942.20         | 7.481               | 320.97     | 0.034              |
| CEM-9Ce1      | 1483.53         | 2.989               | 224.33     | 0.025              |
| CEM-9Ce2      | 2690.76         | 7.247               | 521.19     | 0.078              |
| CEM-9Co       | 1401.35         | 2.770               | 276.86     | 0.031              |
| CEM-10S       | 6058.57         | 12.009              | 280.20     | 0.031              |
| CEM-10Ce1     | 9109.87         | 16.830              | 234.90     | 0.024              |
| CEM-10Ce2     | 1074.91         | 2.030               | 241.38     | 0.025              |
| CEM-10Co      | 13218.88        | 31.693              | 1063.35    | 0.142              |



### Cementation Suite (Continued)

| Game Ranch, S | Game Ranch, South Dakota, samples |                     |            |                    |  |
|---------------|-----------------------------------|---------------------|------------|--------------------|--|
| Sample        | [Fe]<br>ppm                       | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |  |
| CEM-11S       | 10183.93                          | 27.972              | 1442.34    | 0.221              |  |
| CEM-11Co      | 22768.73                          | 180.301             | 2461.97    | 1.087              |  |
| CEM-11Cr1     | 4073.17                           | 12.308              | 423.42     | 0.071              |  |
| CEM-11Cr2     | 1644.17                           | 5.219               | 346.32     | 0.061              |  |
| CEM-12S       | 773.39                            | 1.427               | 322.47     | 0.033              |  |
| CEM-12Co      | 28657.81                          | 83.814              | 1541.98    | 0.251              |  |
| CEM-12Cr1     | 15255.76                          | 48.515              | 625.00     | 0.111              |  |
| CEM-12Cr2     | 1516.00                           | 6.409               | 308.19     | 0.073              |  |
| CEM-13S       | 553.87                            | 1.044               | 479.80     | 0.050              |  |
| CEM-13Co      | 8455.51                           | 25.568              | 2086.71    | 0.352              |  |
| CEM-13Cr      | 851.55                            | 2.578               | 385.02     | 0.065              |  |
| CEM-14S       | 18157.46                          | 44.807              | 853.81     | 0.117              |  |
| CEM-14Ce1     | 251512.43                         | 1746.486            | 437.05     | 0.169              |  |
| CEM-14Ce2     | 5458.01                           | 229.363             | 293.87     | 0.689              |  |
| CEM-14Cr1     | 299573.59                         | 8560.619            | 916.13     | 1.460              |  |
| CEM-14Cr2     | 36920.99                          | 660.314             | 1493.93    | 1.490              |  |
| CEM-15S       | 1062.48                           | 1.949               | 398.01     | 0.041              |  |
| CEM-15Co1     | 11014.53                          | 29.449              | 1498.51    | 0.223              |  |
| CEM-15Co2     | 19198.16                          | 149.428             | 2612.06    | 1.134              |  |



181

| Trask Ranch, S | South Dakota, samp | les                 |            |                    |
|----------------|--------------------|---------------------|------------|--------------------|
| Sample         | [Fe]<br>ppm        | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
| CEM-16S        | 1249.06            | 2.407               | 435.43     | 0.047              |
| CEM-16Ce1      | 2447.17            | 5.044               | 345.91     | 0.040              |
| CEM-16Ce2      | 5213.36            | 10.167              | 428.40     | 0.047              |
| CEM-16Co       | 4763.16            | 11.388              | 1275.58    | 0.170              |
| CEM-17S1       | 1483.17            | 3.739               | 451.16     | 0.063              |
| CEM-17S2       | 3249.96            | 6.663               | 401.03     | 0.046              |
| CEM-17Ce1      | 4655.32            | 10.506              | 408.06     | 0.051              |
| CEM-17Ce2      | 1818.36            | 3.416               | 321.83     | 0.034              |
| CEM-17Co       | 4593.61            | 11.030              | 1259.95    | 0.169              |
| CEM-18S        | 565.11             | 1.029               | 285.96     | 0.029              |
| CEM-18Ce       | 4260.18            | 7.657               | 500.78     | 0.050              |
| CEM-18Co       | 6202.89            | 17.108              | 1431.01    | 0.220              |
| CEM-19S1       | 1015.03            | 2.290               | 393.22     | 0.049              |
| CEM-19S2       | 974.03             | 1.986               | 336.07     | 0.038              |
| CEM-19Ce1      | 10597.98           | 14.580              | 885.75     | 0.068              |
| CEM-19Ce2      | 3362.32            | 7.461               | 733.11     | 0.091              |
| CEM-19Co       | 4800.10            | 11.399              | 1326.01    | 0.176              |
| CEM-20S        | 500.36             | 0.938               | 552.24     | 0.058              |
| CEM-20Co       | 7025.35            | 19.149              | 1602.90    | 0.244              |
| CEM-21S        | 1508.37            | 3.692               | 475.97     | 0.065              |
| CEM-21Ce1      | 47.19              | 0.107               | 277.22     | 0.035              |
| CEM-21Co       | 4781.54            | 12.510              | 1379.76    | 0.201              |
| CEM-22S1       | 2047.93            | 5.213               | 815.19     | 0.116              |
| CEM-22S2       | 1250.87            | 2.667               | 744.25     | 0.088              |
| CEM-22Ce1      | 3883.43            | 9.927               | 892.39     | 0.127              |
| CEM-22Ce2      | 1072.54            | 2.074               | 213.98     | 0.023              |
| CEM-22Co       | 7773.58            | 21.045              | 2059.93    | 0.311              |
| CEM-23S        | 4351.04            | 11.254              | 1102.74    | 0.159              |
| CEM-23Ce1      | 4112.30            | 7.487               | 399.04     | 0.041              |
| CEM-23Ce2      | 5012.99            | 9.469               | 211.90     | 0.022              |
| CEM-23Co       | 6507.38            | 15.972              | 1712.64    | 0.234              |



| Trask Ranch, S | outh Dakota, samp | les (Continued)     |            |                    |
|----------------|-------------------|---------------------|------------|--------------------|
| Sample         | [Fe]<br>ppm       | Fe/Ca<br>(mMol/Mol) | [K]<br>ppm | K/Ca<br>(mMol/Mol) |
| CEM-24S        | 2006.90           | 5.274               | 557.65     | 0.082              |
| CEM-24Ce       | 1309.88           | 2.510               | 323.60     | 0.035              |
| CEM-24Co       | 5344.90           | 14.357              | 1596.19    | 0.239              |
| CEM-25S        | 103.24            | 0.183               | 283.57     | 0.028              |
| CEM-25Ce       | 1665.79           | 3.226               | 301.08     | 0.033              |
| CEM-25Co       | 5375.24           | 13.351              | 1241.12    | 0.172              |
| CEM-26S        | 2497.39           | 4.837               | 448.43     | 0.048              |
| CEM-26Ce       | 5861.85           | 14.262              | 1416.74    | 0.192              |
| CEM-26Co       | 6339.45           | 12.286              | 468.31     | 0.051              |
| CEM-27S        | 5588.00           | 12.786              | 1044.63    | 0.133              |
| CEM-27Ce       | 2114.49           | 4.202               | 191.74     | 0.021              |
| CEM-27Co       | 4139.04           | 10.107              | 1259.02    | 0.171              |
| CEM-28S        | 1116.53           | 2.177               | 461.56     | 0.050              |
| CEM-28Ce       | 2327.46           | 7.336               | 312.40     | 0.055              |
| CEM-28Co       | 4255.89           | 13.399              | 1245.74    | 0.219              |
| CEM-29S        | 737.26            | 1.585               | 382.61     | 0.046              |
| CEM-29Co       | 5663.25           | 14.020              | 1304.50    | 0.180              |
| CEM-29Cr       | 3382.42           | 7.176               | 562.29     | 0.067              |
| CEM-30S        | 2736.93           | 5.731               | 805.32     | 0.094              |
| CEM-30Ce1      | 1276.86           | 3.343               | 71.29      | 0.010              |
| CEM-30Ce2      | 6931.16           | 17.775              | 464.26     | 0.066              |
| CEM-30Co       | 4968.02           | 12.799              | 1256.27    | 0.180              |
| CEM-31S        | 1661.88           | 3.406               | 956.27     | 0.109              |
| CEM-31Ce       | 4575.42           | 9.356               | 803.24     | 0.092              |
| CEM-32S        | 4423.38           | 8.612               | 185.87     | 0.020              |
| CEM-32Ce       | 11133.99          | 23.804              | 59.69      | 0.007              |
| CEM-33S        | 1501.39           | 3.232               | 343.47     | 0.041              |
| CEM-33Co       | 5290.24           | 15.037              | 1413.63    | 0.224              |
| CEM-34S        | N/A               | N/A                 | 287.84     | 0.048              |
| CEM-34Co       | 4690.15           | 11.326              | 1352.09    | 0.182              |



| Kremmling, Co | olorado, samples |                     |             |                     |
|---------------|------------------|---------------------|-------------|---------------------|
| Sample        | [Mg]<br>ppm      | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
| CEM-1S        | 1925.60          | 12.440              | 4209.74     | 12.038              |
| CEM-1Ce       | 2204.28          | 11.970              | 2338.66     | 5.621               |
| CEM-1Co       | 3500.28          | 26.159              | 3284.83     | 10.866              |
| CEM-2S        | 2642.51          | 12.151              | 4333.35     | 8.820               |
| CEM-2Co       | 7586.01          | 49.856              | 9212.94     | 26.800              |
| CEM-3S        | 1086.86          | 6.766               | 5189.71     | 14.301              |
| CEM-3Ce       | 1766.71          | 6.126               | 2497.75     | 3.833               |
| CEM-3Co       | 2208.73          | 20.344              | 3135.77     | 12.784              |
| CEM-4S        | 2657.12          | 7.012               | 10423.82    | 12.176              |
| CEM-4Co       | 3684.14          | 28.799              | 3798.09     | 13.142              |
| CEM-5S        | 2258.40          | 10.646              | 5992.27     | 12.503              |
| CEM-5Ce       | 1573.58          | 9.312               | 2454.61     | 6.429               |
| CEM-5Co       | 3735.79          | 27.727              | 3675.51     | 12.074              |
| CEM-6S        | 577.62           | 18.318              | 246.42      | 3.459               |
| CEM-6Ce       | 3695.40          | 17.957              | 647.83      | 1.393               |
| CEM-6Co       | 3180.86          | 27.503              | 3887.91     | 14.879              |
| CEM-7S        | 2411.34          | 11.727              | 4917.09     | 10.584              |
| CEM-7Ce       | 3709.39          | 16.438              | 2710.49     | 5.316               |
| CEM-7Co       | 3036.54          | 15.434              | 5409.66     | 12.170              |
| CEM-8S        | 1713.13          | 8.429               | 7196.78     | 15.673              |
| CEM-8Ce       | 2476.26          | 11.956              | 2338.92     | 4.998               |
| CEM-8Co       | 4684.42          | 33.907              | 3881.35     | 12.435              |
| CEM-9S        | 2789.99          | 12.179              | 2781.31     | 5.374               |
| CEM-9Ce1      | 503.97           | 2.336               | 2059.01     | 4.224               |
| CEM-9Ce2      | 970.86           | 6.015               | 929.51      | 2.549               |
| CEM-9Co       | 619.93           | 2.819               | 2212.32     | 4.453               |
| CEM-10S       | 1909.15          | 8.705               | 7771.08     | 15.684              |
| CEM-10Ce1     | 1700.05          | 7.225               | 2001.87     | 3.766               |
| CEM-10Ce2     | 448.86           | 1.950               | 3297.99     | 6.342               |
| CEM-10Co      | 2928.45          | 16.152              | 5831.75     | 14.237              |



### Cementation Suite (Continued)

| Game Ranch, S | Game Ranch, South Dakota, samples |                     |             |                     |  |  |
|---------------|-----------------------------------|---------------------|-------------|---------------------|--|--|
| Sample        | [Mg]<br>ppm                       | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |  |  |
| CEM-11S       | 11234.98                          | 70.988              | 4048.30     | 11.322              |  |  |
| CEM-11Co      | 4141.76                           | 75.449              | 5173.71     | 41.716              |  |  |
| CEM-11Cr1     | 436.46                            | 3.034               | 1856.76     | 5.713               |  |  |
| CEM-11Cr2     | 185.38                            | 1.354               | 348.50      | 1.126               |  |  |
| CEM-12S       | 265.57                            | 1.127               | 264.06      | 0.496               |  |  |
| CEM-12Co      | 6878.74                           | 46.279              | 7669.42     | 22.839              |  |  |
| CEM-12Cr1     | 1208.51                           | 8.841               | 2079.96     | 6.735               |  |  |
| CEM-12Cr2     | 161.56                            | 1.571               | 1385.51     | 5.964               |  |  |
| CEM-13S       | 339.54                            | 1.473               | 484.53      | 0.930               |  |  |
| CEM-13Co      | 5107.06                           | 35.525              | 4783.73     | 14.729              |  |  |
| CEM-13Cr      | 311.36                            | 2.168               | 903.60      | 2.785               |  |  |
| CEM-14S       | 2292.85                           | 13.016              | 1515.90     | 3.809               |  |  |
| CEM-14Ce1     | 15911.84                          | 254.174             | 13506.79    | 95.499              |  |  |
| CEM-14Ce2     | 557.98                            | 53.940              | 372.86      | 15.954              |  |  |
| CEM-14Cr1     | 13037.18                          | 857.020             | 23881.43    | 694.867             |  |  |
| CEM-14Cr2     | 2910.27                           | 119.734             | 16724.11    | 304.551             |  |  |
| CEM-15S       | 188.58                            | 0.796               | 756.39      | 1.413               |  |  |
| CEM-15Co1     | 8167.99                           | 50.237              | 3238.25     | 8.816               |  |  |
| CEM-15Co2     | 4782.25                           | 85.627              | 10352.44    | 82.045              |  |  |



185

| Trask Ranch, S | South Dakota, samp | les                 |             |                     |
|----------------|--------------------|---------------------|-------------|---------------------|
| Sample         | [Mg]<br>ppm        | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
| CEM-16S        | 2746.05            | 12.171              | 783.25      | 1.537               |
| CEM-16Ce1      | 925.28             | 4.388               | 1522.48     | 3.195               |
| CEM-16Ce2      | 3115.91            | 13.979              | 2982.59     | 5.923               |
| CEM-16Co       | 13260.39           | 72.932              | 5819.61     | 14.167              |
| CEM-17S1       | 3621.42            | 21.001              | 1411.27     | 3.622               |
| CEM-17S2       | 8289.60            | 39.095              | 2397.31     | 5.004               |
| CEM-17Ce1      | 3066.32            | 15.919              | 2473.52     | 5.684               |
| CEM-17Ce2      | 1846.18            | 7.978               | 1344.48     | 2.572               |
| CEM-17Co       | 15531.84           | 85.794              | 3813.52     | 9.324               |
| CEM-18S        | 926.51             | 3.883               | 527.06      | 0.978               |
| CEM-18Ce       | 4185.72            | 17.305              | 2549.51     | 4.666               |
| CEM-18Co       | 16163.31           | 102.549             | 3596.46     | 10.100              |
| CEM-19S1       | 2394.59            | 12.428              | 1539.06     | 3.536               |
| CEM-19S2       | 4131.37            | 19.380              | 1493.92     | 3.102               |
| CEM-19Ce1      | 3203.42            | 10.138              | 9155.12     | 12.824              |
| CEM-19Ce2      | 1099.64            | 5.613               | 2387.06     | 5.393               |
| CEM-19Co       | 12223.09           | 66.775              | 13683.93    | 33.089              |
| CEM-20S        | 2263.66            | 9.757               | 425.34      | 0.811               |
| CEM-20Co       | 15983.06           | 100.218             | 2752.25     | 7.639               |
| CEM-21S        | 5109.22            | 28.771              | 1101.75     | 2.746               |
| CEM-21Ce1      | 12088.74           | 62.797              | 1371.51     | 3.153               |
| CEM-21Co       | 12978.97           | 78.115              | 2763.75     | 7.363               |
| CEM-22S1       | 6911.16            | 40.472              | 794.24      | 2.059               |
| CEM-22S2       | 6727.02            | 32.994              | 691.14      | 1.500               |
| CEM-22Ce1      | 7815.29            | 45.957              | 1728.23     | 4.498               |
| CEM-22Ce2      | 9454.39            | 42.066              | 1911.97     | 3.765               |
| CEM-22Co       | 13359.77           | 83.201              | 3337.65     | 9.200               |
| CEM-23S        | 4629.41            | 27.546              | 2878.12     | 7.580               |
| CEM-23Ce1      | 2241.49            | 9.388               | 5662.31     | 10.497              |
| CEM-23Ce2      | 654.48             | 2.844               | 8617.82     | 16.575              |
| CEM-23Co       | 14039.63           | 79.270              | 3287.83     | 8.217               |



| Trask Ranch, So | outh Dakota, sampl | les (continued)     |             |                     |
|-----------------|--------------------|---------------------|-------------|---------------------|
| Sample          | [Mg]<br>ppm        | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
| CEM-24S         | 5749.52            | 34.759              | 1635.41     | 4.376               |
| CEM-24Ce        | 10506.80           | 46.312              | 1647.69     | 3.215               |
| CEM-24Co        | 15756.35           | 97.363              | 4240.37     | 11.598              |
| CEM-25S         | 597.62             | 2.438               | 225.38      | 0.407               |
| CEM-25Ce        | 18500.89           | 82.430              | 3719.73     | 7.336               |
| CEM-25Co        | 12874.94           | 73.563              | 3473.57     | 8.785               |
| CEM-26S         | 4046.24            | 18.028              | 3240.42     | 6.391               |
| CEM-26Ce        | 15324.63           | 85.772              | 6730.28     | 16.673              |
| CEM-26Co        | 2889.94            | 12.885              | 3591.80     | 7.088               |
| CEM-27S         | 7527.14            | 39.620              | 3907.32     | 9.103               |
| CEM-27Ce        | 13019.12           | 59.523              | 7352.15     | 14.878              |
| CEM-27Co        | 17161.91           | 96.404              | 3598.44     | 8.947               |
| CEM-28S         | 2813.35            | 12.619              | 523.58      | 1.039               |
| CEM-28Ce        | 7824.72            | 56.736              | 1484.89     | 4.766               |
| CEM-28Co        | 13351.52           | 96.698              | 2170.49     | 6.958               |
| CEM-29S         | 1115.73            | 5.518               | 55.99       | 0.123               |
| CEM-29Co        | 13707.01           | 78.062              | 6269.72     | 15.804              |
| CEM-29Cr        | 1873.37            | 9.142               | 3474.58     | 7.505               |
| CEM-30S         | 4141.72            | 19.950              | 1576.25     | 3.361               |
| CEM-30Ce1       | 13108.56           | 78.947              | 2087.25     | 5.564               |
| CEM-30Ce2       | 2959.39            | 17.459              | 6204.11     | 16.201              |
| CEM-30Co        | 16865.85           | 99.959              | 3175.60     | 8.331               |
| CEM-31S         | 1302.99            | 6.144               | 2656.91     | 5.545               |
| CEM-31Ce        | 798.18             | 3.755               | 7422.87     | 15.455              |
| CEM-32S         | 2185.38            | 9.788               | 8619.19     | 17.087              |
| CEM-32Ce        | 1927.36            | 9.479               | 20595.20    | 44.834              |
| CEM-33S         | 3068.71            | 15.196              | 594.38      | 1.303               |
| CEM-33Co        | 11965.39           | 78.236              | 3103.77     | 8.983               |
| CEM-34S         | 231.95             | 1.588               | 32.20       | 0.098               |
| CEM-34Co        | 19755.00           | 109.745             | 2059.04     | 5.063               |



#### Cementation Suite

| Sample    | [Na]<br>ppm | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |
|-----------|-------------|---------------------|-------------|---------------------|
| CEM-1S    | 608.14      | 4.151               | 446.82      | 0.801               |
| CEM-1Ce   | 388.22      | 2.227               | 304.26      | 0.458               |
| CEM-1Co   | 608.65      | 4.806               | 339.70      | 0.704               |
| CEM-2S    | 546.98      | 2.657               | 647.58      | 0.826               |
| CEM-2Co   | 1713.64     | 11.899              | 1028.78     | 1.876               |
| CEM-3S    | 696.95      | 4.584               | 546.90      | 0.944               |
| CEM-3Ce   | 481.71      | 1.765               | 624.18      | 0.600               |
| CEM-3Co   | 654.92      | 6.373               | 202.35      | 0.517               |
| CEM-4S    | 655.23      | 1.827               | 1325.49     | 0.970               |
| CEM-4Co   | 929.55      | 7.677               | 317.10      | 0.688               |
| CEM-5S    | 492.22      | 2.452               | 725.64      | 0.949               |
| CEM-5Ce   | 533.66      | 3.336               | 94.09       | 0.154               |
| CEM-5Co   | 649.28      | 5.091               | 409.40      | 0.843               |
| CEM-6S    | 416.39      | 13.951              | 1171.13     | 10.302              |
| CEM-6Ce   | 526.52      | 2.703               | 279.10      | 0.376               |
| CEM-6Co   | 581.35      | 5.311               | 337.13      | 0.809               |
| CEM-7S    | 2052.37     | 10.545              | 707.50      | 0.954               |
| CEM-7Ce   | 683.35      | 3.199               | 381.89      | 0.469               |
| CEM-7Co   | 567.91      | 3.050               | 549.30      | 0.774               |
| CEM-8S    | 547.09      | 2.844               | 663.57      | 0.906               |
| CEM-8Ce   | 398.67      | 2.034               | 286.08      | 0.383               |
| CEM-8Co   | 606.63      | 4.639               | 368.25      | 0.739               |
| CEM-9S    | 636.25      | 2.934               | 763.94      | 0.925               |
| CEM-9Ce1  | 377.19      | 1.847               | 356.28      | 0.458               |
| CEM-9Ce2  | 512.19      | 3.353               | N/A         | N/A                 |
| CEM-9Co   | 387.33      | 1.861               | 137.54      | 0.174               |
| CEM-10S   | 476.94      | 2.298               | 663.14      | 0.839               |
| CEM-10Ce1 | 427.46      | 1.919               | 468.24      | 0.552               |
| CEM-10Ce2 | 918.71      | 4.217               | 142.32      | 0.172               |
| CEM-10Co  | 477.01      | 2.780               | 435.87      | 0.667               |



### Cementation Suite (Continued)

| Game Ranch, S | Game Ranch, South Dakota, samples |                     |             |                     |  |  |
|---------------|-----------------------------------|---------------------|-------------|---------------------|--|--|
| Sample        | [Na]<br>ppm                       | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | Sr/Ca<br>(mMol/Mol) |  |  |
| CEM-11S       | 1699.97                           | 11.348              | 1123.33     | 1.969               |  |  |
| CEM-11Co      | 1876.77                           | 36.121              | 426.30      | 2.154               |  |  |
| CEM-11Cr1     | 848.81                            | 6.234               | 1182.29     | 2.280               |  |  |
| CEM-11Cr2     | 725.21                            | 5.595               | 1072.97     | 2.173               |  |  |
| CEM-12S       | 3882.54                           | 17.415              | 3061.82     | 3.606               |  |  |
| CEM-12Co      | 1981.10                           | 14.082              | 919.51      | 1.716               |  |  |
| CEM-12Cr1     | 959.66                            | 7.417               | 1077.21     | 2.186               |  |  |
| CEM-12Cr2     | 501.68                            | 5.154               | 1059.68     | 2.859               |  |  |
| CEM-13S       | 4203.02                           | 19.263              | 2069.59     | 2.490               |  |  |
| CEM-13Co      | 2242.68                           | 16.482              | 1530.01     | 2.952               |  |  |
| CEM-13Cr      | 607.09                            | 4.467               | 653.35      | 1.262               |  |  |
| CEM-14S       | 3579.83                           | 21.470              | 3398.15     | 5.351               |  |  |
| CEM-14Ce1     | 993.15                            | 16.761              | 470.24      | 2.084               |  |  |
| CEM-14Ce2     | 446.20                            | 45.573              | 3578.30     | 95.956              |  |  |
| CEM-14Cr1     | 582.63                            | 40.465              | 13.02       | 0.237               |  |  |
| CEM-14Cr2     | 896.45                            | 38.966              | 309.72      | 3.535               |  |  |
| CEM-15S       | 4865.36                           | 21.693              | 2384.12     | 2.791               |  |  |
| CEM-15Co1     | 1218.55                           | 7.918               | 906.31      | 1.546               |  |  |
| CEM-15Co2     | 2040.53                           | 38.601              | 444.73      | 2.209               |  |  |



189

| Trask Ranch, So | uth Dakota, samp | oles                |             |                    |
|-----------------|------------------|---------------------|-------------|--------------------|
| Sample          | [Na]<br>ppm      | Na/Ca<br>(mMol/Mol) | [Sr]<br>ppm | SrCa<br>(mMol/Mol) |
| CEM-16S         | 3658.19          | 10.436              | 11408.96    | 4.498              |
| CEM-16Ce1       | 160.44           | 2.481               | 5896.43     | 0.211              |
| CEM-16Ce2       | 243.88           | 3.432               | 12967.74    | 0.304              |
| CEM-16Co        | 551.83           | 7.658               | 29633.70    | 0.842              |
| CEM-17S1        | 2332.95          | 12.648              | 11950.54    | 3.753              |
| CEM-17S2        | 1499.76          | 9.382               | 18079.87    | 1.962              |
| CEM-17Ce1       | 211.38           | 18.433              | 14743.31    | 0.304              |
| CEM-17Ce2       | 209.58           | 7.262               | 7233.90     | 0.251              |
| CEM-17Co        | 577.64           | 7.265               | 29420.97    | 0.885              |
| CEM-18S         | 4946.09          | 11.721              | 9898.06     | 5.750              |
| CEM-18Ce        | 291.11           | 4.985               | 13187.86    | 0.334              |
| CEM-18Co        | 554.10           | 17.648              | 37019.87    | 0.975              |
| CEM-19S1        | 2561.37          | 14.381              | 10752.52    | 3.688              |
| CEM-19S2        | 2818.05          | 10.309              | 12204.53    | 3.667              |
| CEM-19Ce1       | 444.79           | 3.763               | 25869.54    | 0.390              |
| CEM-19Ce2       | 290.94           | 9.574               | 9749.54     | 0.412              |
| CEM-19Co        | 638.93           | 8.170               | 36674.08    | 0.968              |
| CEM-20S         | 3114.51          | 16.133              | 11052.71    | 3.724              |
| CEM-20Co        | 587.00           | 7.976               | 35714.57    | 1.021              |
| CEM-21S         | 1591.71          | 17.893              | 13889.75    | 2.486              |
| CEM-21Ce1       | 712.77           | 7.870               | 15931.48    | 1.027              |
| CEM-21Co        | 474.55           | 8.543               | 26217.09    | 0.792              |
| CEM-22S1        | 1949.98          | 43.450              | 20555.48    | 3.168              |
| CEM-22S2        | 1945.49          | 28.435              | 18361.48    | 2.647              |
| CEM-22Ce1       | 875.22           | 45.712              | 24092.61    | 1.428              |
| CEM-22Ce2       | 426.24           | 4.688               | 14076.35    | 0.526              |
| CEM-22Co        | 442.71           | 14.503              | 33152.26    | 0.765              |
| CEM-23S         | 1288.43          | 17.179              | 19312.15    | 2.127              |
| CEM-23Ce1       | 263.68           | 9.402               | 15082.80    | 0.306              |
| CEM-23Ce2       | 255.65           | 1.470               | 15073.05    | 0.308              |
| CEM-23Co        | 529.26           | 7.867               | 30301.44    | 0.829              |



| Sample                 | [Na]                  | Na/Ca<br>(mMol/Mol)    | [Sr]                  | SrCa                  |
|------------------------|-----------------------|------------------------|-----------------------|-----------------------|
| CEM-24S                | <b>ppm</b><br>3739.38 | <u>23.884</u>          | <b>ppm</b><br>1538.88 | (mMol/Mol)<br>2.581   |
| CEM-24S<br>CEM-24Ce    | 1238.99               | 5.770                  | 1205.27               | 1.474                 |
| CEM-24Ce<br>CEM-24Co   | 1238.99               | 12.497                 | 583.39                | 1.474                 |
| CEM-24C0               | 3408.53               | 12.497                 | 3061.08               | 3.464                 |
| CEM-25Ce               | 926.39                | 4.361                  | 721.52                | 0.892                 |
| CEM-25Co               | 959.09                | 5.790                  | 565.92                | 0.892                 |
| CEM-26S                | 2252.36               | 10.603                 | 2561.66               | 3.166                 |
| CEM-26Ce               | 1207.39               | 7.140                  | 707.12                | 1.098                 |
| CEM-26Co               | 874.07                | 4.117                  | 602.84                | 0.746                 |
| CEM-27S                | 6268.12               | 34.858                 | 1842.73               | 2.691                 |
| CEM-27S<br>CEM-27Ce    | 551.09                | 2.662                  | 452.77                | 0.574                 |
| CEM-27Co               | 1330.67               | 7.897                  | 618.02                | 0.963                 |
| CEM-27C0               | 4233.60               | 20.062                 | 2772.22               | 3.449                 |
| CEM-28S<br>CEM-28Ce    | 623.57                | 4.777                  | 283.21                | 0.570                 |
| CEM-28Ce               | 1494.71               | 11.437                 | 493.74                | 0.370                 |
| CEM-28C0               | 4056.19               | 21.195                 | 1506.57               | 2.067                 |
| CEM-29S<br>CEM-29Co    | 1452.21               | 8.738                  | 582.05                | 0.920                 |
| CEM-29C0<br>CEM-29Cr   | 3006.70               | 15.503                 | 243.90                | 0.320                 |
| CEM-29CI<br>CEM-30S    | 3000.70               | 15.271                 | 1346.21               | 1.799                 |
| CEM-30S<br>CEM-30Ce1   | 682.00                | 4.340                  | 539.89                | 0.902                 |
| CEM-30Ce1<br>CEM-30Ce2 | 680.85                | 4.340                  | 299.99                | 0.902                 |
| CEM-30Ce2<br>CEM-30Co  | 1085.38               | 6.796                  |                       | 1.108                 |
| CEM-30C0               | 5300.72               | 26.406                 | 673.87<br>2090.25     | 2.734                 |
| CEM-31S<br>CEM-31Ce    | 786.07                | 3.907                  | 358.32                | 0.468                 |
| CEM-31Ce<br>CEM-32S    | 2828.21               | 13.383                 | 1443.49               | 1.793                 |
| CEM-32S<br>CEM-32Ce    | 492.66                | 2.560                  | 417.26                | 0.569                 |
| CEM-32Ce<br>CEM-33S    | 492.00                | 2.360                  | 2195.65               | 3.016                 |
| CEM-33S<br>CEM-33Co    | 1453.32               | 10.040                 | 543.67                | 0.986                 |
|                        |                       |                        |                       |                       |
| CEM-34S                | 2081.65               | 15.054                 | 2043.12               | 3.879                 |
| CEM-34Co<br>CEM-24S    | 1047.47<br>3739.38    | <u>6.148</u><br>23.884 | 708.97<br>1538.88     | <u>1.093</u><br>2.581 |



| Samp | ple [Al]<br>ppm |        | Al/Ca<br>(mMol/Mol) | [Ca]<br>ppm |
|------|-----------------|--------|---------------------|-------------|
| B2   | 2.5             | 365.81 | 2.063               | 264065.56   |
| B2   | 7.5             | N/A    | N/A                 | 321462.40   |
| B2   | 12.5            | N/A    | N/A                 | 343369.70   |
| B2   | 17.5            | N/A    | N/A                 | 294905.20   |
| B2   | 22.5            | N/A    | N/A                 | 335379.87   |
| B2   | 27.5            | N/A    | N/A                 | 284469.30   |
| B2   | 32.5            | N/A    | N/A                 | 326394.41   |
| B3   | 2.5             | 188.00 | 0.846               | 330841.49   |
| B3   | 7.5             | N/A    | N/A                 | 355309.16   |
| B3   | 12.5            | N/A    | N/A                 | 369106.63   |
| B4   | 2.5             | N/A    | N/A                 | 170565.47   |
| B4   | 7.5             | N/A    | N/A                 | 364469.94   |
| B4   | 12.5            | N/A    | N/A                 | 305218.85   |
| B4   | 17.5            | N/A    | N/A                 | 367046.51   |
| B4   | 22.5            | N/A    | N/A                 | 362235.49   |
| B4   | 27.5            | N/A    | N/A                 | 344474.10   |
| B4   | 32.5            | N/A    | N/A                 | 381711.31   |
| B4   | 37.5            | N/A    | N/A                 | 346901.60   |
| B4   | 42.5            | 278.85 | 0.764               | 543356.45   |
| B5   | 2.5             | N/A    | N/A                 | N/A         |
| B5   | 7.5             | N/A    | N/A                 | 366027.98   |
| B5   | 12.5            | N/A    | N/A                 | 763881.69   |
| B5   | 17.5            | N/A    | N/A                 | 413460.84   |
| B6   | 12.5            | 409.97 | 1.809               | 337424.10   |
| B6   | 17.5            | 125.86 | 0.598               | 313332.14   |
| B6   | 22.5            | N/A    | N/A                 | 330895.94   |
| B6   | 27.5            | N/A    | N/A                 | 368588.90   |
| B6   | 32.5            | N/A    | N/A                 | 339138.45   |
| B6   | 37.5            | 231.32 | 1.030               | 334370.43   |
| B7   | 2.5             | 223.58 | 0.397               | 838018.58   |
| B7   | 7.5             | N/A    | N/A                 | 406809.47   |
| B7   | 12.5            | 156.61 | 0.688               | 339064.25   |
| B7   | 17.5            | N/A    | N/A                 | 53845.91    |
| B7   | 22.5            | N/A    | N/A                 | 210883.79   |
| B7   | 27.5            | N/A    | N/A                 | 478341.92   |



| 0      |      | [Fe]    | Fe/Ca      | [K]     | K/Ca       |
|--------|------|---------|------------|---------|------------|
| Sample |      | ppm     | (mMol/Mol) | ppm     | (mMol/Mol) |
| B2     | 2.5  | 253.38  | 0.688      | 542.61  | 2.107      |
| B2     | 7.5  | 512.75  | 1.144      | 427.00  | 1.362      |
| B2     | 12.5 | 285.70  | 0.597      | 300.75  | 0.898      |
| B2     | 17.5 | 138.77  | 0.338      | 246.24  | 0.856      |
| B2     | 22.5 | 288.98  | 0.618      | 397.57  | 1.216      |
| B2     | 27.5 | 467.20  | 1.178      | 771.03  | 2.780      |
| B2     | 32.5 | 203.63  | 0.448      | 365.25  | 1.148      |
| B3     | 2.5  | 1549.54 | 3.360      | 594.00  | 1.841      |
| B3     | 7.5  | N/A     | N/A        | 202.63  | 0.585      |
| B3     | 12.5 | 58.80   | 0.114      | 251.90  | 0.700      |
| B4     | 2.5  | 455.94  | 1.918      | 277.64  | 1.669      |
| B4     | 7.5  | 198.24  | 0.390      | 316.33  | 0.890      |
| B4     | 12.5 | 365.87  | 0.860      | 519.55  | 1.746      |
| B4     | 17.5 | 624.25  | 1.220      | 422.99  | 1.182      |
| B4     | 22.5 | 456.92  | 0.905      | 443.68  | 1.256      |
| B4     | 27.5 | 133.28  | 0.278      | 319.08  | 0.950      |
| B4     | 32.5 | 476.06  | 0.895      | 204.51  | 0.549      |
| B4     | 37.5 | 100.25  | 0.207      | 290.00  | 0.857      |
| B4     | 42.5 | 1329.01 | 1.755      | 452.25  | 0.854      |
| B5     | 2.5  | N/A     | N/A        | N/A     | N/A        |
| B5     | 7.5  | 260.38  | 0.510      | 268.07  | 0.751      |
| B5     | 12.5 | 729.59  | 0.685      | 514.90  | 0.691      |
| B5     | 17.5 | 493.78  | 0.857      | 228.26  | 0.566      |
| B6     | 12.5 | 1864.20 | 3.963      | 679.94  | 2.067      |
| B6     | 17.5 | 604.98  | 1.385      | 429.89  | 1.407      |
| B6     | 22.5 | 596.92  | 1.294      | 340.73  | 1.056      |
| B6     | 27.5 | 458.02  | 0.891      | 248.77  | 0.692      |
| B6     | 32.5 | 632.02  | 1.337      | 294.57  | 0.891      |
| B6     | 37.5 | 1867.93 | 4.007      | 624.41  | 1.915      |
| B7     | 2.5  | 411.079 | 0.352      | 571.386 | 0.699      |
| B7     | 7.5  | 112.121 | 0.198      | 305.127 | 0.769      |
| B7     | 12.5 | 331.526 | 0.701      | 299.098 | 0.905      |
| B7     | 17.5 | N/A     | N/A        | 69.551  | 1.325      |
| B7     | 22.5 | N/A     | N/A        | 138.953 | 0.676      |
| B7     | 27.5 | 203.877 | 0.306      | 272.128 | 0.583      |



| Sample |      | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
|--------|------|-------------|---------------------|-------------|---------------------|
| B2     | 2.5  | 1103.28     | 6.895               | 121.96      | 0.337               |
| B2     | 7.5  | 692.85      | 3.557               | 61.34       | 0.139               |
| B2     | 12.5 | 377.51      | 1.814               | 16.95       | 0.036               |
| B2     | 17.5 | 554.67      | 3.104               | 26.15       | 0.065               |
| B2     | 22.5 | 769.82      | 3.788               | 99.04       | 0.216               |
| B2     | 27.5 | 1166.87     | 6.769               | 35.76       | 0.092               |
| B2     | 32.5 | 736.39      | 3.723               | 87.52       | 0.196               |
| B3     | 2.5  | 1662.20     | 8.291               | 415.16      | 0.917               |
| B3     | 7.5  | 140.79      | 0.654               | N/A         | N/A                 |
| B3     | 12.5 | 225.82      | 1.010               | N/A         | N/A                 |
| B4     | 2.5  | 696.56      | 6.739               | 745.32      | 3.192               |
| B4     | 7.5  | 539.15      | 2.441               | 301.33      | 0.604               |
| B4     | 12.5 | 553.86      | 2.994               | 696.80      | 1.668               |
| B4     | 17.5 | 1403.97     | 6.312               | 1076.20     | 2.142               |
| B4     | 22.5 | 560.25      | 2.552               | 365.53      | 0.737               |
| B4     | 27.5 | 403.32      | 1.932               | 46.49       | 0.099               |
| B4     | 32.5 | 567.06      | 2.451               | 490.47      | 0.939               |
| B4     | 37.5 | 551.40      | 2.623               | 123.12      | 0.259               |
| B4     | 42.5 | 874.62      | 2.656               | 686.58      | 0.923               |
| B5     | 2.5  | N/A         | N/A                 | N/A         | N/A                 |
| B5     | 7.5  | 338.17      | 1.525               | 339.01      | 0.677               |
| B5     | 12.5 | 852.53      | 1.842               | 772.40      | 0.739               |
| B5     | 17.5 | 325.04      | 1.297               | 293.41      | 0.518               |
| B6     | 12.5 | 569.22      | 2.784               | 202.87      | 0.439               |
| B6     | 17.5 | 227.85      | 1.200               | 33.72       | 0.079               |
| B6     | 22.5 | 192.82      | 0.962               | 39.96       | 0.088               |
| B6     | 27.5 | 133.89      | 0.599               | 96.75       | 0.192               |
| B6     | 32.5 | 173.27      | 0.843               | 106.28      | 0.229               |
| B6     | 37.5 | 309.15      | 1.526               | 294.99      | 0.644               |
| B7     | 2.5  | 689.49      | 1.358               | 20.46       | 0.018               |
| B7     | 7.5  | 279.84      | N/A                 | N/A         | N/A                 |
| B7     | 12.5 | 624.12      | 1.135               | N/A         | N/A                 |
| B7     | 17.5 | 29.91       | N/A                 | N/A         | N/A                 |
| B7     | 22.5 | 48.37       | 3.038               | N/A         | N/A                 |
| B7     | 27.5 | 300.82      | N/A                 | N/A         | N/A                 |



| Samp | le   | [Na]                  | Na/Ca<br>(mMol/Mol) | [Sr]                  | Sr/Ca               |
|------|------|-----------------------|---------------------|-----------------------|---------------------|
| B2   | 2.5  | <b>ppm</b><br>2745.51 | 18.127              | <b>ppm</b><br>1250.82 | (mMol/Mol)<br>2.168 |
| B2   | 7.5  | 3195.37               | 17.330              | 1814.69               | 2.584               |
| B2   | 12.5 | 3280.43               | 16.657              | 2139.38               | 2.852               |
| B2   | 17.5 | 2489.63               | 14.719              | 2248.10               | 3.490               |
| B2   | 22.5 | 2753.32               | 14.313              | 2713.46               | 3.704               |
| B2   | 27.5 | 2677.46               | 16.410              | 2143.82               | 3.450               |
| B2   | 32.5 | 2803.36               | 14.975              | 2455.55               | 3.444               |
| B3   | 2.5  | 3161.26               | 16.659              | 2336.08               | 3.232               |
| B3   | 7.5  | 3347.26               | 16.425              | 2550.73               | 3.286               |
| B3   | 12.5 | 3356.28               | 15.853              | 2458.28               | 3.049               |
| B4   | 2.5  | 1789.78               | 18.295              | 1301.99               | 3.494               |
| B4   | 7.5  | 3953.98               | 18.914              | 2360.86               | 2.965               |
| B4   | 12.5 | 3451.79               | 19.717              | 2824.90               | 4.23                |
| B4   | 17.5 | 4339.64               | 20.613              | 2089.54               | 2.600               |
| B4   | 22.5 | 3984.04               | 19.176              | 3629.91               | 4.58                |
| B4   | 27.5 | 4034.24               | 20.418              | 9932.54               | 13.199              |
| B4   | 32.5 | 4945.77               | 22.590              | 2419.72               | 2.902               |
| B4   | 37.5 | 4605.32               | 23.146              | 2106.24               | 2.779               |
| B4   | 42.5 | 6871.01               | 22.047              | 2930.35               | 2.469               |
| B5   | 2.5  | N/A                   | N/A                 | N/A                   | N/A                 |
| B5   | 7.5  | 2386.76               | 11.369              | 4491.82               | 5.61                |
| B5   | 12.5 | 5477.84               | 12.503              | 10180.48              | 6.10                |
| B5   | 17.5 | 2857.64               | 12.050              | 4980.93               | 5.51                |
| B6   | 12.5 | 3694.64               | 19.090              | 1809.70               | 2.45                |
| B6   | 17.5 | 3643.65               | 20.274              | 1388.38               | 2.028               |
| B6   | 22.5 | 3936.76               | 20.743              | 1843.46               | 2.550               |
| B6   | 27.5 | 4443.74               | 21.020              | 1854.99               | 2.304               |
| B6   | 32.5 | 3776.52               | 19.415              | 1856.95               | 2.500               |
| B6   | 37.5 | 3968.67               | 20.694              | 1911.85               | 2.61                |
| B7   | 2.5  | 9865.91               | 20.526              | 5495.74               | 3.002               |
| B7   | 7.5  | 4594.97               | 19.693              | 2547.85               | 2.86                |
| B7   | 12.5 | 3876.55               | 19.933              | 1946.12               | 2.627               |
| B7   | 17.5 | 870.24                | 28.178              | 255.58                | 2.173               |
| B7   | 22.5 | 2287.59               | 18.913              | 1297.76               | 2.817               |
| B7   | 27.5 | 9865.91               | 21.350              | 5495.74               | 2.82                |



195

| Hoplos     | caphites | candidates |       |          |        |       |            |
|------------|----------|------------|-------|----------|--------|-------|------------|
| Sample     | ρ        | [Al]       |       |          | Ca     |       | [Ca]       |
| Sample     |          | ppm        | ppm   |          | l/Mol) |       | ppm        |
| <b>S</b> 1 | 2.5      | 267        | 7.506 |          | 1.921  |       | 207305.573 |
| <b>S</b> 1 | 7.5      | 221        | .982  |          | 0.800  |       | 413260.421 |
| <b>S</b> 1 | 12.5     | 463        | 8.827 |          | 1.842  |       | 374873.236 |
| <b>S</b> 1 | 17.5     | 181        | .901  |          | 0.670  |       | 404235.535 |
| <b>S</b> 1 | 32.5     | 1233       | .915  |          | 4.842  |       | 379420.193 |
| <b>S</b> 1 | 37.5     | 845        | 5.684 |          | 2.757  |       | 456738.989 |
| S1         | 42.5     | 335        | 5.825 |          | 1.441  |       | 346888.808 |
| <b>S</b> 1 | 47.5     | 302        | 2.080 |          | 1.447  |       | 310867.078 |
| <b>S</b> 1 | 62.5     | 783        | 5.004 |          | 3.873  |       | 300981.475 |
| <b>S</b> 1 | 67.5     | 1312       | 2.810 |          | 4.583  |       | 426500.180 |
| S2         | 2.5      |            | N/A   |          | N/A    |       | 363074.242 |
| S2         | 7.5      | 501        | .274  |          | 2.114  |       | 353040.889 |
| S2         | 12.5     | 285        | 5.278 |          | 1.234  |       | 344306.458 |
| S2         | 17.5     | 219        | 0.309 |          | 1.132  |       | 288390.323 |
| S2         | 22.5     | 140        | 0.032 |          | 0.560  |       | 372052.545 |
| S2         | 27.5     | 352        | 2.531 |          | 1.426  |       | 368066.327 |
|            |          | [Fe]       | ]     | Fe/Ca    | [K]    |       | K/Ca       |
| Sample     | e        | ppm        | (mN   | Mol/Mol) | ppm    |       | (mMol/Mol) |
| <b>S</b> 1 | 2.5      | 1037.694   |       | 3.591    | 673    | 8.166 | 3.330      |
| <b>S</b> 1 | 7.5      | 991.069    |       | 1.720    | 884    | 1.817 | 2.196      |
| <b>S</b> 1 | 12.5     | 653.155    |       | 1.250    | 841    | .025  | 2.301      |
| <b>S</b> 1 | 17.5     | 526.465    |       | 0.934    | 1265   | 5.433 | 3.210      |
| <b>S</b> 1 | 32.5     | 1296.603   |       | 2.451    | 707    | 7.980 | 1.914      |
| <b>S</b> 1 | 37.5     | 1640.322   |       | 2.576    | 872    | 2.473 | 1.959      |
| <b>S</b> 1 | 42.5     | 701.613    |       | 1.451    | 731    | .966  | 2.164      |
| <b>S</b> 1 | 47.5     | 1241.730   |       | 2.865    | 859    | 9.870 | 2.837      |
| <b>S</b> 1 | 62.5     | 1420.432   |       | 3.385    | 773    | 3.337 | 2.635      |
| <b>S</b> 1 | 67.5     | 1473.389   |       | 2.478    | 1918   | 3.705 | 4.614      |
| S2         | 2.5      | 373.206    |       | 0.737    |        | 1.245 | 1.509      |
| S2         | 7.5      | 1310.532   |       | 2.663    |        | 3.555 | 1.782      |
| S2         | 12.5     | 2192.516   |       | 4.568    |        | 8.918 | 1.412      |
| S2         | 17.5     | 676.055    |       | 1.682    |        | 3.382 | 2.217      |
| S2         | 22.5     | 634.111    |       | 1.223    |        | ).938 | 1.271      |
| S2         | 27.5     | 3331.153   |       | 6.492    |        | 5.538 | 3.248      |



| Hoplos     | <i>caphites</i> ca | ndidates    |                     |             |                     |
|------------|--------------------|-------------|---------------------|-------------|---------------------|
| Sample     | e                  | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
| S1         | 2.5                | 929.445     | 7.399               | 477.264     | 1.682               |
| S1         | 7.5                | 2262.391    | 9.034               | 919.957     | 1.626               |
| S1         | 12.5               | 1407.234    | 6.195               | 568.949     | 1.109               |
| S1         | 17.5               | 895.423     | 3.655               | 464.788     | 0.840               |
| S1         | 32.5               | 2468.561    | 10.736              | 954.553     | 1.838               |
| <b>S</b> 1 | 37.5               | 3976.392    | 14.367              | 1830.487    | 2.927               |
| S1         | 42.5               | 1935.495    | 9.207               | 593.163     | 1.249               |
| <b>S</b> 1 | 47.5               | 1452.461    | 7.710               | 753.260     | 1.770               |
| S1         | 62.5               | 2940.578    | 16.122              | 1473.613    | 3.576               |
| S1         | 67.5               | 1995.245    | 7.720               | 1668.781    | 2.858               |
| S2         | 2.5                | 747.733     | 3.399               | 333.517     | 0.671               |
| S2         | 7.5                | 1382.136    | 6.460               | 1219.453    | 2.523               |
| S2         | 12.5               | 3328.246    | 15.952              | 2018.030    | 4.281               |
| S2         | 17.5               | 971.218     | 5.557               | 666.030     | 1.687               |
| S2         | 22.5               | 801.759     | 3.556               | 489.688     | 0.961               |
| S2         | 27.5               | 3972.158    | 17.809              | 2750.446    | 5.458               |
| C          | _                  | [Na]        | Na/Ca               | [Sr]        | Sr/Ca               |
| Sample     | t l                | ppm         | (mMol/Mol)          | ppm         | (mMol/Mol)          |
| S1         | 2.5                | 1680.081    | 14.130              | 2097.634    | 4.632               |
| S1         | 7.5                | 3447.681    | 14.545              | 4458.938    | 4.939               |
| S1         | 12.5               | 2998.697    | 13.946              | 4022.630    | 4.912               |
| S1         | 17.5               | 3274.164    | 14.122              | 4434.066    | 5.021               |
| S1         | 32.5               | 3435.729    | 15.788              | 3551.256    | 4.285               |
| S1         | 37.5               | 5545.564    | 21.169              | 4098.000    | 4.107               |
| S1         | 42.5               | 2998.499    | 15.071              | 3625.386    | 4.784               |
| S1         | 47.5               | 2647.014    | 14.846              | 3056.276    | 4.500               |
| S1         | 62.5               | 2667.383    | 15.451              | 2545.437    | 3.871               |
| S1         | 67.5               | 4227.225    | 17.280              | 3902.494    | 4.189               |
| S2         | 2.5                | 2812.526    | 13.506              | 4496.015    | 5.669               |
| S2         | 7.5                | 2428.104    | 11.991              | 4250.387    | 5.511               |
| S2         | 12.5               | 1970.739    | 9.979               | 3389.025    | 4.506               |
| S2         | 17.5               | 2199.829    | 13.299              | 3635.913    | 5.771               |
| S2         | 22.5               | 2612.656    | 12.243              | 4590.141    | 5.648               |
| S2         | 27.5               | 2749.112    | 13.022              | 3636.406    | 4.523               |



| E2<br>E2<br>E2<br>E2<br>E2<br>E2<br>E2<br>E2<br>E2 | 2.5<br>7.5<br>12.5<br>17.5 | ppm<br>N/A | (mMol/Mol) | ppm        |
|----------------------------------------------------|----------------------------|------------|------------|------------|
| E2<br>E2<br>E2<br>E2<br>E2<br>E2                   | 7.5<br>12.5                |            | N/A        | 357989.515 |
| E2<br>E2<br>E2<br>E2                               | 12.5                       | NI/A       | N/A<br>N/A | 392733.687 |
| E2<br>E2<br>E2                                     |                            | N/A<br>N/A | N/A<br>N/A | 316045.993 |
| E2<br>E2                                           |                            | N/A<br>N/A | N/A<br>N/A | 343872.149 |
| E2                                                 | 22.5                       | N/A<br>N/A | N/A<br>N/A | 379829.79  |
|                                                    | 27.5                       | N/A<br>N/A | N/A<br>N/A | 339860.586 |
|                                                    | 32.5                       | N/A<br>N/A | N/A<br>N/A | 358598.942 |
| E2                                                 | 37.5                       | N/A<br>N/A | N/A<br>N/A | 386914.33  |
| E2<br>E2                                           | 42.5                       | N/A<br>N/A | N/A<br>N/A | 415595.254 |
| E2<br>E2                                           | 42.3                       | N/A<br>N/A | N/A<br>N/A | 321592.71  |
|                                                    |                            |            |            |            |
| E2                                                 | 52.5                       | N/A        | N/A        | 268579.79  |
| E2                                                 | 57.5                       | N/A        | N/A        | 371053.678 |
| E2                                                 | 62.5                       | N/A        | N/A        | 333722.98  |
| E2                                                 | 67.5                       | N/A        | N/A        | 344491.44  |
| E2                                                 | 72.5                       | N/A        | N/A        | 302795.16  |
| E2                                                 | 77.5                       | N/A        | N/A        | 386660.94  |
| E2                                                 | 82.5                       | N/A        | N/A        | 719557.82  |
| E2                                                 | 87.5                       | 281.205    | 1.999      | 209487.46  |
| E2                                                 | 92.5                       | N/A        | N/A        | 262396.33  |
| E2                                                 | 97.5                       | N/A        | N/A        | 295143.92  |
| E2                                                 | 102.5                      | 124.799    | 0.710      | 261856.05  |
| E2                                                 | 107.5                      | N/A        | N/A        | 315942.62  |
| E2                                                 | 112.5                      | N/A        | N/A        | 426532.82  |
| E2                                                 | 117.5                      | N/A        | N/A        | 380409.14  |
| E2                                                 | 122.5                      | N/A        | N/A        | N/A        |
| E2                                                 | 127.5                      | N/A        | N/A        | 358731.53  |
| E2                                                 | 132.5                      | N/A        | N/A        | 381276.87  |
| E2                                                 | 137.5                      | N/A        | N/A        | 389496.89  |
| E2                                                 | 142.5                      | N/A        | N/A        | 307078.77  |
| E2                                                 | 147.5                      | N/A        | N/A        | 355207.18  |
| E2                                                 | 152.5                      | N/A        | N/A        | 329934.78  |
| E2                                                 | 157.5                      | N/A        | N/A        | 321906.76  |
| E2                                                 | 162.5                      | N/A        | N/A        | 350568.68  |
| E2                                                 | 167.5                      | N/A        | N/A        | 344855.34  |
| E2<br>E2                                           | 172.5<br>177.5             | N/A<br>N/A | N/A<br>N/A | 370882.86  |



|      |       | [Fe]     | Fe/Ca      | [K]      | K/Ca       |
|------|-------|----------|------------|----------|------------|
| Samp | le    | ppm      | (mMol/Mol) | ppm      | (mMol/Mol) |
| E2   | 2.5   | 938.191  | 1.880      | 323.853  | 0.928      |
| E2   | 7.5   | 3131.102 | 5.719      | 365.827  | 0.955      |
| E2   | 12.5  | 5840.093 | 13.256     | 306.323  | 0.994      |
| E2   | 17.5  | 2553.503 | 5.327      | 242.078  | 0.722      |
| E2   | 22.5  | 327.995  | 0.619      | 172.459  | 0.466      |
| E2   | 27.5  | 368.158  | 0.777      | 765.244  | 2.309      |
| E2   | 32.5  | 6239.827 | 12.482     | 66.705   | 0.191      |
| E2   | 37.5  | 43.613   | 0.081      | 208.561  | 0.553      |
| E2   | 42.5  | 303.957  | 0.525      | 492.421  | 1.215      |
| E2   | 47.5  | 277.377  | 0.619      | 74.623   | 0.238      |
| E2   | 52.5  | 218.064  | 0.582      | 80.698   | 0.308      |
| E2   | 57.5  | 1126.252 | 2.177      | 696.592  | 1.925      |
| E2   | 62.5  | 8376.820 | 18.006     | 330.674  | 1.016      |
| E2   | 67.5  | 1781.972 | 3.711      | 92.997   | 0.277      |
| E2   | 72.5  | 328.411  | 0.778      | 126.692  | 0.429      |
| E2   | 77.5  | 884.107  | 1.640      | 294.667  | 0.782      |
| E2   | 82.5  | 2249.656 | 2.243      | 240.859  | 0.343      |
| E2   | 87.5  | 634.189  | 2.172      | 254.076  | 1.244      |
| E2   | 92.5  | 351.399  | 0.961      | 438.625  | 1.714      |
| E2   | 97.5  | 674.868  | 1.640      | 713.208  | 2.478      |
| E2   | 102.5 | 775.879  | 2.126      | 550.986  | 2.158      |
| E2   | 107.5 | 675.692  | 1.534      | 587.231  | 1.906      |
| E2   | 112.5 | 766.888  | 1.290      | 2956.035 | 7.108      |
| E2   | 117.5 | 1037.426 | 1.956      | 1507.606 | 4.064      |
| E2   | 122.5 | N/A      | N/A        | N/A      | N/A        |
| E2   | 127.5 | 122.770  | 0.246      | 714.571  | 2.043      |
| E2   | 132.5 | 111.700  | 0.210      | 602.870  | 1.622      |
| E2   | 137.5 | 323.470  | 0.596      | 869.781  | 2.290      |
| E2   | 142.5 | 893.415  | 2.087      | 719.905  | 2.404      |
| E2   | 147.5 | 536.647  | 1.084      | 665.591  | 1.922      |
| E2   | 152.5 | 63.138   | 0.137      | 1001.761 | 3.114      |
| E2   | 157.5 | 1080.845 | 2.409      | 687.522  | 2.190      |
| E2   | 162.5 | 1450.485 | 2.968      | 943.150  | 2.759      |
| E2   | 167.5 | 121.729  | 0.253      | 1431.286 | 4.257      |
| E2   | 172.5 | 39.575   | 0.077      | 494.127  | 1.366      |
| E2   | 177.5 | N/A      | N/A        | 968.986  | 8.346      |



| Same   |       | [Mg]     | Mg/Ca      | [Mn]     | Mn/Ca      |  |
|--------|-------|----------|------------|----------|------------|--|
| Sample |       | ppm      | (mMol/Mol) | ppm      | (mMol/Mol) |  |
| E2     | 2.5   | 558.708  | 2.575      | 1596.912 | 3.258      |  |
| E2     | 7.5   | 3359.352 | 14.115     | 4139.469 | 7.699      |  |
| E2     | 12.5  | 4393.909 | 22.942     | 4555.007 | 10.527     |  |
| E2     | 17.5  | 1501.208 | 7.204      | 4232.184 | 8.990      |  |
| E2     | 22.5  | 525.503  | 2.283      | 564.516  | 1.086      |  |
| E2     | 27.5  | 529.075  | 2.569      | 564.660  | 1.214      |  |
| E2     | 32.5  | 7783.962 | 35.820     | 3775.783 | 7.691      |  |
| E2     | 37.5  | 90.974   | 0.388      | 171.050  | 0.323      |  |
| E2     | 42.5  | 525.259  | 2.086      | 371.867  | 0.654      |  |
| E2     | 47.5  | 380.864  | 1.954      | 518.794  | 1.178      |  |
| E2     | 52.5  | 792.042  | 4.866      | 327.559  | 0.891      |  |
| E2     | 57.5  | 2761.972 | 12.283     | 992.663  | 1.954      |  |
| E2     | 62.5  | 9996.105 | 49.429     | 3297.253 | 7.217      |  |
| E2     | 67.5  | 987.714  | 4.731      | 1497.412 | 3.175      |  |
| E2     | 72.5  | 712.695  | 3.884      | 213.278  | 0.514      |  |
| E2     | 77.5  | 1412.707 | 6.029      | 1144.864 | 2.163      |  |
| E2     | 82.5  | 3027.117 | 6.942      | 3259.342 | 3.309      |  |
| E2     | 87.5  | 1130.262 | 8.903      | 659.651  | 2.300      |  |
| E2     | 92.5  | 1348.895 | 8.483      | 249.326  | 0.694      |  |
| E2     | 97.5  | 1396.050 | 7.806      | 401.265  | 0.993      |  |
| E2     | 102.5 | 451.286  | 2.844      | 311.868  | 0.870      |  |
| E2     | 107.5 | 3108.621 | 16.237     | 1080.125 | 2.497      |  |
| E2     | 112.5 | 289.345  | 1.119      | N/A      | N/A        |  |
| E2     | 117.5 | 346.270  | 1.502      | 1932.354 | 3.710      |  |
| E2     | 122.5 | N/A      | N/A        | N/A      | N/A        |  |
| E2     | 127.5 | 126.928  | 0.584      | 34.516   | 0.070      |  |
| E2     | 132.5 | 151.922  | 0.658      | 22.586   | 0.043      |  |
| E2     | 137.5 | 229.721  | 0.973      | 94.090   | 0.176      |  |
| E2     | 142.5 | 4813.707 | 25.868     | 1292.276 | 3.074      |  |
| E2     | 147.5 | 203.056  | 0.943      | 205.688  | 0.423      |  |
| E2     | 152.5 | 215.164  | 1.076      | 38.379   | 0.085      |  |
| E2     | 157.5 | 167.241  | 0.857      | 398.627  | 0.905      |  |
| E2     | 162.5 | 240.580  | 1.132      | 178.241  | 0.371      |  |
| E2     | 167.5 | 91.297   | 0.437      | N/A      | N/A        |  |
| E2     | 172.5 | 136.143  | 0.606      | 96.542   | 0.190      |  |
| E2     | 177.5 | 1023.247 | 14.182     | N/A      | N/A        |  |

APPENDIX C: MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES



200

| 1    | <i>phoceras</i> car | [Na]     | Na/Ca      | [Sr]     | Sr/Ca      |
|------|---------------------|----------|------------|----------|------------|
| Samp | le                  | ppm      | (mMol/Mol) | ppm      | (mMol/Mol) |
| E2   | 2.5                 | 3143.566 | 15.310     | 2815.277 | 3.600      |
| E2   | 7.5                 | 2433.356 | 10.802     | 2745.420 | 3.200      |
| E2   | 12.5                | 2074.545 | 11.444     | 2159.821 | 3.128      |
| E2   | 17.5                | 2337.642 | 11.852     | 2497.766 | 3.325      |
| E2   | 22.5                | 3097.241 | 14.217     | 3382.274 | 4.076      |
| E2   | 27.5                | 3127.369 | 16.043     | 2890.340 | 3.893      |
| E2   | 32.5                | 1328.274 | 6.458      | 1727.350 | 2.205      |
| E2   | 37.5                | 3673.192 | 16.552     | 3718.224 | 4.399      |
| E2   | 42.5                | 4029.576 | 16.905     | 3791.570 | 4.176      |
| E2   | 47.5                | 2677.898 | 14.518     | 2817.560 | 4.011      |
| E2   | 52.5                | 2331.152 | 15.133     | 2297.579 | 3.916      |
| E2   | 57.5                | 3101.720 | 14.574     | 3186.961 | 3.932      |
| E2   | 62.5                | 891.246  | 4.656      | 854.129  | 1.172      |
| E2   | 67.5                | 2635.394 | 13.338     | 2502.775 | 3.326      |
| E2   | 72.5                | 2479.422 | 14.276     | 2627.486 | 3.972      |
| E2   | 77.5                | 3043.543 | 13.724     | 3157.269 | 3.738      |
| E2   | 82.5                | 5390.879 | 13.062     | 5796.172 | 3.687      |
| E2   | 87.5                | 1792.081 | 14.915     | 1788.658 | 3.908      |
| E2   | 92.5                | 2718.365 | 18.062     | 2343.992 | 4.089      |
| E2   | 97.5                | 2872.468 | 16.968     | 2338.568 | 3.627      |
| E2   | 102.5               | 2732.672 | 18.195     | 2296.197 | 4.014      |
| E2   | 107.5               | 2539.856 | 14.016     | 2118.883 | 3.070      |
| E2   | 112.5               | 6065.631 | 24.794     | 2974.800 | 3.193      |
| E2   | 117.5               | 4048.767 | 18.556     | 3071.339 | 3.696      |
| E2   | 122.5               | N/A      | N/A        | N/A      | N/A        |
| E2   | 127.5               | 4169.405 | 20.264     | 3173.310 | 4.049      |
| E2   | 132.5               | 4231.817 | 19.351     | 3415.773 | 4.101      |
| E2   | 137.5               | 4656.530 | 20.844     | 3430.437 | 4.032      |
| E2   | 142.5               | 2415.989 | 13.717     | 1728.667 | 2.577      |
| E2   | 147.5               | 4109.150 | 20.169     | 3364.547 | 4.336      |
| E2   | 152.5               | 4303.299 | 22.740     | 2895.533 | 4.017      |
| E2   | 157.5               | 3467.890 | 18.782     | 2972.524 | 4.227      |
| E2   | 162.5               | 4367.932 | 21.723     | 3176.304 | 4.148      |
| E2   | 167.5               | 4073.746 | 20.596     | 3040.137 | 4.035      |
| E2   | 172.5               | 3739.776 | 17.580     | 3621.499 | 4.470      |
| E2   | 177.5               | 7042.681 | 103.127    | 863.113  | 3.318      |

## (CONTINUED)



| APPENDIX C: MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES |
|------------------------------------------------------------|
| (CONTINUED)                                                |

| Nymph  | nalucina a | nd Anomia candida | ites     |                     |       |     |             |
|--------|------------|-------------------|----------|---------------------|-------|-----|-------------|
| Sample |            | [Al]<br>ppm       | (1       | Al/Ca<br>(mMol/Mol) |       |     | [Ca]<br>ppm |
| N1     | 2.5        |                   | N/A      |                     | N/A   |     | 383590.021  |
| N1     | 7.5        |                   | N/A      |                     | N/A   |     | 362891.188  |
| N1     | 12.5       |                   | N/A      |                     | N/A   |     | 398020.200  |
| N1     | 17.5       |                   | N/A      |                     | N/A   |     | 392288.327  |
| N1     | 32.5       |                   | N/A      |                     | N/A   |     | 323092.385  |
| A1     | 2.5        |                   | N/A      |                     | N/A   |     | 358872.790  |
| A1     | 7.5        |                   | N/A      |                     | N/A   |     | 384260.889  |
| A1     | 12.5       |                   | N/A      |                     | N/A   |     | 374301.768  |
| A1     | 17.5       |                   | N/A      |                     | N/A   |     | 353644.015  |
| A1     | 32.5       | 313               | 3.512    |                     | 1.336 |     | 349475.836  |
| A1     | 37.5       |                   | N/A      |                     | N/A   |     | 373988.796  |
| A1     | 42.5       | 278               | 3.264    |                     | 1.208 |     | 342863.817  |
| Sampl  | 0          | [Fe]              | Fe/Ca    |                     | [K]   |     | K/Ca        |
| Sampl  | e          | ppm               | (mMol/Mo | ol)                 | ррт   |     | (mMol/Mol)  |
| N1     | 2.5        | 170.106           | 0.       | 318                 | 362.  | 403 | 0.969       |
| N1     | 7.5        | 67.622            | 0.       | 134                 | 234.  | 074 | 0.662       |
| N1     | 12.5       | N/A               | ]        | N/A                 | 148.  | 942 | 0.384       |
| N1     | 17.5       | N/A               | ]        | N/A                 | 131.  | 907 | 0.345       |
| N1     | 32.5       | N/A               | ]        | N/A                 | 171.  | 604 | 0.545       |
| A1     | 2.5        | 918.146           | 1.       | 835                 | 323.  | 444 | 0.924       |
| A1     | 7.5        | 1451.142          | 2.       | 709                 | 209.  | 154 | 0.558       |
| A1     | 12.5       | 829.541           | 1.       | 590                 | 241.  | 885 | 0.663       |
| A1     | 17.5       | 709.174           |          | 439                 | 156.  | 098 | 0.453       |
| A1     | 32.5       | 3036.520          | 6.       | 233                 | 486.  | 185 | 1.427       |
| A1     | 37.5       | 710.092           |          | 362                 | 290.  |     | 0.796       |
| A1     | 42.5       | 3401.292          | 7.       | 116                 | 421.  | 545 | 1.261       |



| Sample | •    | [Mg]<br>ppm | Mg/Ca<br>(mMol/Mol) | [Mn]<br>ppm | Mn/Ca<br>(mMol/Mol) |
|--------|------|-------------|---------------------|-------------|---------------------|
| N1     | 2.5  | 2285.270    | 9.831               | N/A         | N/A                 |
| N1     | 7.5  | 118.549     | 0.539               | N/A         | N/A                 |
| N1     | 12.5 | 121.402     | 0.503               | N/A         | N/A                 |
| N1     | 17.5 | 41.921      | 0.176               | N/A         | N/A                 |
| N1     | 32.5 | 71.621      | 0.366               | N/A         | N/A                 |
| A1     | 2.5  | 1163.814    | 5.352               | 645.626     | 1.314               |
| A1     | 7.5  | 1212.179    | 5.206               | 868.040     | 1.650               |
| A1     | 12.5 | 1190.934    | 5.251               | 508.333     | 0.992               |
| A1     | 17.5 | 1388.580    | 6.480               | 679.623     | 1.404               |
| A1     | 32.5 | 1525.369    | 7.203               | 1569.174    | 3.280               |
| A1     | 37.5 | 1236.942    | 5.458               | 662.344     | 1.294               |
| A1     | 42.5 | 1677.122    | 8.072               | 1378.195    | 2.936               |
| Sample |      | [Na]        | Na/Ca               | [Sr]        | Sr/Ca               |
| Sampic | ,    | ppm         | (mMol/Mol)          | ppm         | (mMol/Mol)          |
| N1     | 2.5  | 2778.774    | 12.630              | 2293.196    | 2.737               |
| N1     | 7.5  | 2632.913    | 12.650              | 1591.672    | 2.008               |
| N1     | 12.5 | 2977.844    | 13.044              | 1645.657    | 1.893               |
| N1     | 17.5 | 2781.541    | 12.362              | 1558.266    | 1.818               |
| N1     | 32.5 | 2513.402    | 13.563              | 1289.327    | 1.827               |
| A1     | 2.5  | 3073.618    | 14.932              | 1344.809    | 1.715               |
| A1     | 7.5  | 3051.470    | 13.845              | 1681.350    | 2.003               |
| A1     | 12.5 | 2922.953    | 13.615              | 2210.529    | 2.703               |
| A1     | 17.5 | 3226.778    | 15.908              | 1198.267    | 1.551               |
| A1     | 32.5 | 2992.887    | 14.931              | 1227.686    | 1.608               |
| A1     | 37.5 | 3358.447    | 15.657              | 1528.931    | 1.871               |
| A1     | 42.5 | 2985.336    | 15.181              | 1362.495    | 1.819               |



| APPENDIX C: MINOR ELEMENTS FOR SCLEROCHRONOLOGY CANDIDATES |
|------------------------------------------------------------|
| (CONTINUED)                                                |

| Inocera | umus candida | tes         |                     |             |  |
|---------|--------------|-------------|---------------------|-------------|--|
| Sample  |              | [Al]<br>ppm | Al/Ca<br>(mMol/Mol) | [Ca]<br>ppm |  |
| I1      | 2.5          | N/A         | N/A                 | 311233.753  |  |
| I1      | 7.5          | 6.710       | 6.710               | 315723.669  |  |
| I1      | 12.5         | 5.967       | 5.967               | 298556.713  |  |
| I1      | 17.5         | N/A         | N/A                 | 354651.599  |  |
| I1      | 22.5         | N/A         | N/A                 | 366202.379  |  |
| I1      | 27.5         | N/A         | N/A                 | 314031.888  |  |
| I1      | 32.5         | N/A         | N/A                 | 371512.081  |  |
| I1      | 37.5         | N/A         | N/A                 | 377823.081  |  |
| I1      | 42.5         | N/A         | N/A                 | 350025.256  |  |
| I2      | 2.5          | N/A         | N/A                 | 405596.204  |  |
| I2      | 7.5          | N/A         | N/A                 | 386228.463  |  |
| I2      | 12.5         | N/A         | N/A                 | 341148.399  |  |
| I2      | 17.5         | N/A         | N/A                 | 387708.491  |  |
| I2      | 22.5         | N/A         | N/A                 | 386007.936  |  |
| I2      | 27.5         | N/A         | N/A                 | 393150.593  |  |
| I2      | 32.5         | N/A         | N/A                 | 368654.959  |  |
| I2      | 37.5         | N/A         | N/A                 | 390735.564  |  |
| I2      | 42.5         | N/A         | N/A                 | 376613.059  |  |
| I2      | 47.5         | N/A         | N/A                 | 380720.871  |  |
| I2      | 52.5         | N/A         | N/A                 | 404350.446  |  |
| I2      | 57.5         | N/A         | N/A                 | 381163.831  |  |
| I3      |              | N/A         | N/A                 | 352842.797  |  |
| I3      |              | N/A         | N/A                 | 374635.577  |  |
| I3      |              | N/A         | N/A                 | 354491.942  |  |
| I3      |              | N/A         | N/A                 | 356544.725  |  |
| I3      |              | N/A         | N/A                 | 358457.535  |  |
| I3      |              | N/A         | N/A                 | 378183.506  |  |



| Sample   |      | [Fe]                  | Fe/Ca<br>(mMol/Mol) | [K]                   | K/Ca<br>(mMol/Mol) |
|----------|------|-----------------------|---------------------|-----------------------|--------------------|
| I1       | 2.5  | <b>ppm</b><br>740.784 | 1.707               | <b>ppm</b><br>280.234 | 0.923              |
| <br>     | 7.5  | 6273.967              | 14.255              | 918.821               | 2.985              |
| <br>     | 12.5 | 3114.574              | 7.483               | 1159.364              | 3.98               |
| <br>     | 12.5 | 372.069               | 0.753               | 260.439               | 0.75               |
| <br>I1   | 22.5 | 728.480               | 1.427               | 209.828               | 0.58               |
| <br>I1   | 37.5 | 1491.288              | 3.407               | 171.881               | 0.56               |
| II<br>I1 | 32.5 | 1128.745              | 2.179               | 193.222               | 0.53               |
| I1       | 37.5 | 481.342               | 0.914               | 306.752               | 0.83               |
| I1       | 42.5 | 548.592               | 1.124               | 134.286               | 0.39               |
| I2       | 2.5  | 132.397               | 0.234               | 200.077               | 0.50               |
| I2       | 7.5  | 431.041               | 0.801               | 129.950               | 0.34               |
| I2       | 12.5 | N/A                   | N/A                 | 169.841               | 0.51               |
| I2       | 17.5 | N/A                   | N/A                 | 178.982               | 0.47               |
| I2       | 22.5 | N/A                   | N/A                 | 325.233               | 0.864              |
| I2       | 27.5 | N/A                   | N/A                 | 179.307               | 0.46               |
| I2       | 32.5 | 24.808                | 0.048               | 188.606               | 0.52               |
| I2       | 37.5 | 48.559                | 0.089               | 166.232               | 0.43               |
| I2       | 42.5 | 108.046               | 0.206               | 191.277               | 0.52               |
| I2       | 47.5 | 86.389                | 0.163               | 229.989               | 0.62               |
| I2       | 52.5 | N/A                   | N/A                 | 122.324               | 0.31               |
| I2       | 57.5 | 2366.774              | 4.454               | 253.962               | 0.68               |
| I3       | 2.5  | 17.547                | 0.036               | 168.466               | 0.49               |
| I3       | 7.5  | 341.205               | 0.653               | 194.376               | 0.532              |
| I3       | 12.5 | 193.455               | 0.391               | 523.458               | 1.514              |
| I3       | 17.5 | 1465.781              | 2.949               | 170.131               | 0.489              |
| I3       | 22.5 | 485.473               | 0.972               | 215.001               | 0.61               |
| I3       | 27.5 | 692.303               | 1.313               | 223.124               | 0.603              |
| I1       | 2.5  | 740.784               | 1.707               | 280.234               | 0.92               |



| Sample |      | [Mg] Mg/Ca |            | [Mn]     | Mn/Ca      |
|--------|------|------------|------------|----------|------------|
| -      |      | ppm        | (mMol/Mol) | ppm      | (mMol/Mol) |
| I1     | 2.5  | 452.468    | 2.399      | 367.301  | 0.862      |
| I1     | 7.5  | 3102.098   | 16.214     | 2778.576 | 6.428      |
| I1     | 12.5 | 902.069    | 4.986      | 410.499  | 1.004      |
| I1     | 17.5 | 124.178    | 0.578      | 133.729  | 0.275      |
| I1     | 22.5 | 441.142    | 1.988      | 65.877   | 0.131      |
| I1     | 37.5 | 401.973    | 2.112      | 258.259  | 0.601      |
| I1     | 32.5 | 81.242     | 0.361      | 154.267  | 0.303      |
| I1     | 37.5 | 99.908     | 0.436      | N/A      | N/A        |
| I1     | 42.5 | 62.324     | 0.294      | N/A      | N/A        |
| I2     | 2.5  | 373.383    | 1.519      | 68.772   | 0.124      |
| I2     | 7.5  | 300.494    | 1.284      | N/A      | N/A        |
| I2     | 12.5 | 204.998    | 0.992      | N/A      | N/A        |
| I2     | 17.5 | 183.920    | 0.783      | N/A      | N/A        |
| I2     | 22.5 | 224.038    | 0.958      | N/A      | N/A        |
| I2     | 27.5 | 153.988    | 0.646      | N/A      | N/A        |
| I2     | 32.5 | 192.483    | 0.862      | 6.257    | 0.012      |
| I2     | 37.5 | 188.492    | 0.796      | N/A      | N/A        |
| I2     | 42.5 | 283.073    | 1.240      | 40.911   | 0.079      |
| I2     | 47.5 | 272.151    | 1.180      | 4.696    | 0.00       |
| I2     | 52.5 | 221.544    | 0.904      | N/A      | N/A        |
| I2     | 57.5 | 524.688    | 2.272      | 9.651    | 0.018      |
| I3     | 2.5  | 636.499    | 2.977      | 162.376  | 0.336      |
| I3     | 7.5  | 389.245    | 1.715      | 506.590  | 0.988      |
| 13     | 12.5 | 241.137    | 1.123      | 290.843  | 0.599      |
| I3     | 17.5 | 680.197    | 3.148      | 2131.878 | 4.36       |
| I3     | 22.5 | 1239.602   | 5.707      | 498.207  | 1.015      |
| I3     | 27.5 | 3348.280   | 14.610     | 1256.739 | 2.42       |
| II     | 2.5  | 636.499    | 2.399      | 162.376  | 0.862      |



| Sample |      | [Na] Na/Ca |            | [Sr]     | Sr/Ca      |
|--------|------|------------|------------|----------|------------|
| -      | 1    | ppm        | (mMol/Mol) | ppm      | (mMol/Mol) |
| I1     | 2.5  | 3494.366   | 19.575     | 1685.724 | 2.479      |
| I1     | 7.5  | 3106.635   | 17.155     | 1816.394 | 2.634      |
| I1     | 12.5 | 3924.016   | 22.915     | 1787.118 | 2.740      |
| I1     | 17.5 | 4065.831   | 19.988     | 1933.915 | 2.496      |
| I1     | 22.5 | 4246.498   | 20.217     | 2114.187 | 2.643      |
| I1     | 37.5 | 3499.893   | 19.431     | 1632.272 | 2.379      |
| I1     | 32.5 | 4059.590   | 19.051     | 2098.192 | 2.585      |
| I1     | 37.5 | 4337.164   | 20.014     | 2058.813 | 2.494      |
| I1     | 42.5 | 3785.824   | 18.857     | 2102.860 | 2.750      |
| I2     | 2.5  | 4558.486   | 19.595     | 1987.458 | 2.243      |
| I2     | 7.5  | 4213.404   | 19.020     | 2010.075 | 2.382      |
| I2     | 12.5 | 3960.495   | 20.241     | 1660.538 | 2.228      |
| I2     | 17.5 | 4316.053   | 19.409     | 1951.055 | 2.304      |
| I2     | 22.5 | 4343.952   | 19.620     | 1939.585 | 2.300      |
| I2     | 27.5 | 4546.847   | 20.164     | 1959.102 | 2.28       |
| I2     | 32.5 | 4472.340   | 21.151     | 1786.193 | 2.218      |
| I2     | 37.5 | 4511.545   | 20.131     | 2049.885 | 2.402      |
| I2     | 42.5 | 4440.401   | 20.556     | 1794.189 | 2.18       |
| I2     | 47.5 | 4283.955   | 19.618     | 1830.258 | 2.201      |
| I2     | 52.5 | 4288.871   | 18.493     | 1887.894 | 2.137      |
| I2     | 57.5 | 4317.318   | 19.748     | 1713.865 | 2.058      |
| I3     | 2.5  | 3907.010   | 19.305     | 2010.343 | 2.608      |
| I3     | 7.5  | 4882.861   | 22.724     | 2139.548 | 2.614      |
| I3     | 12.5 | 4029.178   | 19.816     | 2077.490 | 2.683      |
| I3     | 17.5 | 3586.001   | 17.535     | 1907.647 | 2.449      |
| I3     | 22.5 | 3842.407   | 18.689     | 2011.537 | 2.569      |
| I3     | 27.5 | 3803.934   | 17.537     | 1818.348 | 2.20       |



| Sample |      | del-13-C | del-18-0 |
|--------|------|----------|----------|
| I2     | L05  | 5.23     | -5.32    |
| I2     | L10  | 5.72     | -5.87    |
| I2     | L15  | 5.54     | -5.55    |
| I2     | L20  | 5.89     | -5.59    |
| I2     | L25  | N/A      | N/A      |
| I2     | R05  | 5.63     | -5.35    |
| I2     | R10  | 5.96     | -5.77    |
| I2     | R15  | 6.10     | -5.66    |
| I2     | R20  | 6.02     | -5.72    |
| I2     | R25  | 4.52     | -3.62    |
| I2     | MTX  | N/A      | N/A      |
| I2     | 0    | 5.47     | -5.44    |
| I2     | 2.5  | 4.59     | -7.02    |
| I2     | 5    | 3.72     | -7.19    |
| I2     | 7.5  | 4.17     | -3.83    |
| I2     | 10   | 5.72     | -5.43    |
| I2     | 12.5 | 5.25     | -6.55    |
| I2     | 15   | 5.96     | -5.73    |
| I2     | 17.5 | 5.94     | -5.81    |
| I2     | 20   | 5.54     | -5.14    |
| I2     | 22.5 | 5.76     | -5.82    |
| I2     | 25   | 5.83     | -5.60    |
| I2     | 27.5 | 5.94     | -5.73    |
| I2     | 30   | 5.89     | -5.65    |
| I2     | 32.5 | 6.10     | -5.66    |
| I2     | 35   | 5.40     | -5.23    |
| I2     | 37.5 | 5.95     | -5.52    |
| I2     | 40   | 3.95     | -4.18    |
| I2     | 42.5 | 5.61     | -5.57    |
| I2     | 45   | 5.92     | -5.63    |
| I2     | 47.5 | 5.84     | -2.21    |
| I2     | 50   | 5.15     | -5.07    |
| I2     | 52.5 | 6.00     | -5.77    |
| I2     | 55   | 6.07     | -5.55    |
| I2     | 57.5 | 5.45     | -5.53    |
| I2     | 60   | 5.64     | -5.58    |

## APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY



| Sample |       | del-13-C | del-18-O |
|--------|-------|----------|----------|
| B7     | L2.5  | -3.40    | -1.44    |
| B7     | L5.0  | N/A      | N/A      |
| B7     | L7.5  | -2.68    | -1.06    |
| B7     | L10.0 | -3.08    | -1.54    |
| B7     | L12.5 | -2.51    | -1.07    |
| B7     | R2.5  | -2.98    | -1.35    |
| B7     | R5.0  | N/A      | N/A      |
| B7     | R7.5  | -3.17    | -1.54    |
| B7     | R10.0 | -5.61    | -3.47    |
| B7     | R12.5 | -5.50    | -1.72    |
| B7     | MTX   | -23.65   | -2.10    |
| B7     | 0     | -11.8716 | -1.44463 |
| B7     | 2.5   | -2.95515 | -1.05585 |
| B7     | 5     | -2.80042 | -0.96956 |
| B7     | 7.5   | -2.67933 | -1.12274 |
| B7     | 10    | -5.47786 | -1.40391 |
| B7     | 12.5  | -2.78312 | -1.16152 |
| B7     | 15    | -3.74223 | -1.29338 |
| B7     | 17.5  | -2.91671 | -1.13923 |
| B7     | 20    | -2.81291 | -1.25169 |
| B7     | 22.5  | -3.11564 | -1.43784 |
| B7     | 25    | -3.52696 | -1.84117 |

## APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED)



| Sample |      | del-13-C | del-18-O |
|--------|------|----------|----------|
| E2     | L05  | N/A      | N/A      |
| E2     | L10  | 1.26     | -0.34    |
| E2     | L25  | 0.33     | -0.48    |
| E2     | L30  | 0.03     | -0.78    |
| E2     | R05  | 0.74     | -0.81    |
| E2     | R10  | 0.59     | -0.66    |
| E2     | R15  | 0.40     | -0.60    |
| E2     | R20  | -0.66    | -1.37    |
| E2     | R25  | -0.20    | -0.76    |
| E2     | MTX  | -22.15   | -1.69    |
| E2     | CEM1 | -14.97   | -4.03    |
| E2     | CEM2 | N/A      | N/A      |
| E2     | CEM3 | 0.18     | -1.18    |

## APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED)



| Sample |     | del-13-C | del-18-0 |
|--------|-----|----------|----------|
| E2     | 0   | -2.34    | -1.99    |
| E2     | 5   | -1.57    | -1.29    |
| E2     | 10  | -1.24    | -1.43    |
| E2     | 15  | -1.38    | -1.47    |
| E2     | 20  | -1.04    | -0.99    |
| E2     | 25  | -0.93    | -1.21    |
| E2     | 30  | -0.89    | -0.84    |
| E2     | 35  | 0.70     | -0.81    |
| E2     | 40  | -2.28    | -2.46    |
| E2     | 45  | -0.48    | -0.90    |
| E2     | 50  | N/A      | N/A      |
| E2     | 55  | -4.41    | -3.78    |
| E2     | 60  | -0.83    | -1.03    |
| E2     | 65  | N/A      | N/A      |
| E2     | 70  | 0.12     | -1.08    |
| E2     | 75  | -1.79    | -2.16    |
| E2     | 80  | -0.59    | -1.02    |
| E2     | 85  | -1.28    | -1.12    |
| E2     | 90  | 0.43     | -0.57    |
| E2     | 95  | -0.15    | -0.93    |
| E2     | 95  | -0.15    | -0.93    |
| E2     | 100 | N/A      | N/A      |
| E2     | 105 | -3.24    | -1.39    |
| E2     | 110 | N/A      | N/A      |
| E2     | 115 | 0.31     | -0.71    |
| E2     | 120 | N/A      | N/A      |
| E2     | 125 | -1.96    | -0.72    |
| E2     | 130 | N/A      | N/A      |
| E2     | 135 | 0.17     | -0.79    |
| E2     | 140 | N/A      | N/A      |
| E2     | 145 | 0.16     | -0.81    |
| E2     | 150 | N/A      | N/A      |
| E2     | 155 | 0.59     | -0.84    |
| E2     | 160 | 0.51     | -0.58    |
| E2     | 165 | 0.89     | -0.42    |
| E2     | 170 | -13.47   | -3.29    |
| E2     | 175 | 0.01     | -1.15    |

## APPENDIX D: STABLE ISOTOPE SCLEROCHRONOLOGY (CONTINUED)

